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Background

It has long been recognized that subtle changes in the orbital and rotational parameters of the Earth

directly modify the spatial and temporal patterns of incident solar radiation, and thus indirectly, but still

quite significantly, influence climate. Though the time scales of climatic forcing via orbital and rotational

change are far removed from the normal time scales of human awareness and public policy decisions, the)'

are nonetheless important. The importance of astronomically forced climatic change stems from two

considerations: the overall magnitude of the effect, and the potential for calibration of climate system

response on othcr time scales. The dominant climatic signal on time scales from 104 years to 107 )'ears is

phase coherent with, and presumably causally linked to orbital and rotational variations. Because the

astronomical forcing can be computationally reconstructed with considerable accuracy, and the climatic

response is prescrved in a myriad of proxy records, the system response function in this frequency band

can be quite wcll constraincd.

Objectives

The basic scientific goal of the Workshop was to arrive at a better understanding of the interactions

between the orbital, rotational and climatic variations of the Earth. In order to accomplish thai objective,

the Workshop was structurcd so as to provide an opportunity for experts in the various sub-disciplines to

vigorously interact and exchangc ideas, in a rather informal setting.

A number of previous workshops and symposia have been held over the last decade on various aspects of

orbital, rotational and climatic interactions. However, significant recent developments have taken place in

a number of the scientific disciplines relevant to understanding the mechanisms associated with

astronomical forcing and climatic response. As the field matures, discussion can shift from the issues

associated with "whether" to those associated with "how". Some of these recent developments include:

7 8
improved models ofplandary orbital evolution over 10 to 10 year timespans,

eldaanced understanding of the Earth's deformational and rotational response to glacial loading

bellcr appreciation for the role of core-mantle coupling in precessional dynamics

improved radiometric dating of key events of the last glacial cycle

acquisition of additional marine and contin_nllal climate records

implementation of improved statistical techniques for comparing climatic and astronomical time series

maturation of algorithms for modeling climatic states and processes

Until quite recently, most of the people actively working on astronomically forced climatic change were

oceanographers or glaciologists. The simple explanation for this observation is that the best records of

quasiperiodic climatic change came from marine sediments and glacial ice cores. However, as the field

develops, one can expect participation from a wider range of disciplines. For example, it seems likely that

significant progress can be made in understanding the precessional dynamics of the solid Earth by

examining the paleoclimatic record. Though recent progress in space geodetic techniques has made it

possible to precisely characterize the rotational response of the Earth on time scales from a few hours to

the lunar nodal precession period (18.6 years), the details of the Earth's response on the spin precession

V



time scale (26 thousand years) are still poorly known, since the direct observations only span a short part

of one period. In that case, high resolution spectral studies of long climatic records have already indicated

subtle effects associated with glacial mass redistribution.

Because of the very interdisciplinary nature of the subject matter of the Workshop, it is difficult for any

one person, or any small group of people to be really conversant with the latest results, techniques and

opinions across the entire spectrum of relevant topics. However, by assembling a diverse and reasonably

large group of people with complementary interests, it was anticipated that each of the participants would

gain a better appreciation for those areas outside their immediate expertise. It was hoped that each

participant would come away from the meeting with an improved understanding ofsymplectic integration

schemes, benthic foraminiferal taphonomy, isotopic fractionation dynamics, stochastic resonances, visco-

elastic normal modes, Hopf bifurcations, quasi-geostrophic potential vorticity, and many of the other

topics represented.

However, the objectives of the workshop extended beyond educating the individual participants. It was

also anticipated that collectively, we would take a critical look at what is now known in various specialty

areas, and also take a broad look at how well all the little pieces fit together. This kind of examination is

helpful in identifying promising new research directions which will eventually fill in the gaps in our

present understanding.

Organization

On 9-11 July 1991, an international workshop on Orbital, Rotational and Climatic Interactions was held

in Olin Hall, which houses the Department of Earth and Planetary Sciences, at the Johns Hopkins

University, in Baltimore, Maryland. The workshop was hosted by the NASA Goddard Space Flight

Center, and was convened by Bruce G. Bills, Head of the Geodynamics Branch at GSFC. The agenda

consisted of five half-day sessions, in which each participant was given an opportunity to present a

summary of their recent work, with ample time for discussion. The afternoon of the third day was devoted

to informal discussion of directions for future research.

Acknowledgments

All workshop participants are thanked for the contributions to this report. Many others also provided

valuable input. Financial support was provided by the NASA Biogeochemistry and Geophysics Program.
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Abstract

Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident

solar radiation, producing major climatic change on time scales of 104-108 years. The orbital

variations are oblivious to internal structure and processes, but the rotational variations are not.

The intent of this article is to describe a program of investigation whose objective would be to

explore and quantify three aspects of orbital, rotational and climatic interactions. An important

premise of this investigation is the synergism between geodynamics and paleoclimate. Better

geophysical models of precessional dynamics are needed in order to accurately reconstruct the

radiative input to climate models. Some of the paleoclimate proxy records contain information

relevant to solid Earth processes, on time scales which are difficult to constrain otherwise.

Specific mechanisms which will be addressed include:

• climatic consequences of deglacial polar motion, and

• precessional and climatic consequences of

- glacially induced perturbations in the gravitational oblateness, and

- partial decoupling of the mantle and core.

The approach entails constructing theoretical models of the rotational, deformational, ra-

diative and climatic response of the Earth to known orbital perturbations, and comparing these

with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may

participate in previously unrecognized feed-back loops in the climate dynamics system. A new

algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate

time series is proposed.



INTRODUCTION

It is widelyrecognizedthat massredistributionsassociatedwith climaticchange(glaciations)

arean importantsourceof crustaldeformationandgeodynamicchange.It is muchlesswidely
appreciatedthat rates,phasesandamplitudesof deformationof thedeepinteriorof the Earth

caninfluenceclimate.Theobjectiveof this investigationis to bettercharacterizefouraspectsof

thisgeodynamiccontributionto globalclimaticchange.Thecommonthemeamongthemhastwo

threads:internalmassredistributionsinfluencetherotationaldynamicsof theEarth,andchanges
in orbital androtationalparametersinfluencethelatitudinalandseasonalpatternof insolation.

Previousattemptstoaccountforastronomicallyforcedclimaticchangehaveusuallyonlyconsidered

extremelysimplisiticmodelsfortheresponseoftheEarthtoexternaltorquesandsurfaceloads.
Thefocusoftheproposedinvestigationwillconsistofthreespecificaspectsofinteractionbetween

internalmassflowandrotationaldynamics,andanewalgorithmforcomparingpaleoclimaticproxy
datawithastronomicallyforcedvariationsin insolationpatterns.

Thelatitudinalandseasonalpatternofincidentsolarradiationdependsontheeccentricityof the

Earth'sorbit andtheorientationofthespinaxisrelativeto boththeorbitnormalandtheaspidal

line.Unitvectorss andn characterizethedirectionsofthespinaxisandorbit normal,respectively.

Twoanglescompletelycharacterizetherelativeorientationofthespinaxis.Theobliquitye is simply

the angle between the orbit normal and the spin axis

e = cos-l(n . s) (1)

The ascending node of the orbit plane on the instantaneous equator plane has an orientation given

by (s x n), and the longitude of perihelion w is just the angle in the orbit plane from that node to

perihelion. It is widely appreciated that secular variations in these three parameters (e,e,w) produce

major climatic change (Hays et al., 1976; Berger et al., 1984). In fact, spectral analyses of long, high

resolution marine sediment isotopic records show significant variance at periods near 100 kyr, 41 kyr

and 19-23 kyr, which are generally attributed to spectral lines in the radiative forcing fluctuations

associated with c, _ and e sin(w), respectively.

The causes and effects of the orbital changes are quite well understood. Gravitational interactions

with the other planets cause the shape and orientation of the orbit to change on time scales of

104-10 _ years. The inclination I and nodal longitude f_ determine the orientation of the orbit plane.

The eccentricity e and perihelic longitude w determine the shape of the orbit and its orientation

within the plane. Note that oa is measured from an inertially fixed direction, rather than the moving



node as is the case for w. The secular evolution of the orbital element pairs (I,f_) and (e,w) can be

conveniently represented in terms of Poisson series

p = sin(I) sin(f_) = ENj sin(sjt+gj)
(2)

q = si_(I)_os(_) = Z,_5 cos(sj t + g_)

h = _sin(w) = CMjsin(r_t+fj) (3)
k = _cos(w) = CM_eos(r_t+f_)

In the lowest order solution, there are as many frequencies rj and sjas there are planets. However,

the frequencies rj and sj are characteristic modal frequencies (eigenvalues) of the coupled system

of oscillators and are not each uniquely associated with a particular planet (Milani, 1988). The

frequencies rj are all positive, indicating that the perihelia advance. In the lowest order solution,

the apsidal rates are all in the interval (0.667 < rj < 28.221 arcsee/year). The corresponding

periods are 45.92 kyr to 1.943 Myr. One of the frequencies sj is zero, and all the others are negative,

indicating that the nodes regress. In the lowest order solution, the non-zero nodal rates are all in

the interval (0.692 < sj < 26.330 arcsec/year). The corresponding periods are 49.22 kyr to 1.873

Myr. In higher order solutions, variations in (e,_) become coupled to variations in (I,f_), but the

solutions can still be cast. in terms of Poisson series like Equations (2) and (3).

Laskar (1988) has recently published a secular variation theory which is complete to fifth order in

eccentricity aim inclination. Agreement between this secular Variation model and strictly numerical

computations (Richardson and Walker, 1989; Quinn et al., 1991) is much better than for any previous

analytical model. The inclination and eccentricity series for Earth each contain 80 distinct terms.

Figures (1) and (2) illustrate the spectra and corresponding histories of variation in orbital inclination

and eccentricity for the past 2 10 6 years.

In computing these secular orbital variations, the Earth, Moon and planets can all be treated as

point masses. No internal structure or processes are relevant to orbital evolution. The physics of

the process is simple, and well understood, though development of proper mathematical tools to

represent the long term evolution remains an area of active research (Laskar, 1988, 1990; Quinn et

al., 1991). On the other hand, the rotational evolution does depend rather sensitively on various

aspects of the structure and dynamics of the interior.

Lunar and solar gravitational torques acting on the oblate figure of the Earth cause the spin axis

s to precess about the instantaneous orbit normal n. If the Earth is considered to be a rigid body,



theevolutionof thespinaxisorientationisgivenby

ds/dt = a(n.s)(s × n)

where

(4)

3(C - A) Gmi -

- gC, - (5)

is a scalar rate factor which depends on intrinsic properties of the Earth, such as polar and

equatorial moments of inertia (C,A) and rotation rate n, and on extrinsic influences, such as masses

m, orbital inclinations I, and semiminor axes b, of the Moon and Sun. The solar and lunar torques

together produce a precession of the spin axis of the Earth at a rate of c_(n. s) = 50.38 arcsec/year

(Kinoshita, 1977, Williams et al., 1991).

Once the present spin axis direction s is known and orbital element histories are given via Equations

(2) and (3), an obliquity history can be constructed from equation (4) in two different ways. The

linear perturbation approach (Miskovic, 1931, Sharaf and Boudnikova, 1967; Vernekar, 1972, 1977;

Ward, 1974; Berger, 1976) involves deriving coefficients of a trigonometric series, similar to Equations

(2) and (3), which yield the obliquity and longitude of perihelion directly as functions of time. An

alternative is to apply standard numerical algorithms for solving initial value problems to generate

a vector time series s(t) and then compute the obliquity and longitude of perihelion directly (Ward,

1979; Laskar, 1986; Bills, 1990b). Figure (3a) shows the spectrum of obliquity variations, which

in the linear perturbation model is simply obtained from the inclination spectrum by shifting each

frequency sj by the luni-solar precession rate (s = 50.38 arcsec/year) and multiplying each amplitude

N i by the spectral admittance

rj = _s/(sj + s) (6)

Figure (3b) shows the numerically integrated obliquity history of Laskar (1986,1988) for the last

2 Ma, using the rotational theory of Kinoshita (1977). The difference between the numerical and

linear perturbation solution never exceeds 0.06 degree over that interval. It is clear that the linear

perturbation solution gives a very adequate representation of the spin precession.

The influence of orbital and rotational variations on climate is operative through perturbations

in the latitudinal and seasonal pattern of insolation. The diurnal average intensity of radiation at a

point is inversely proportional to the squared solar distance and directly proportional to the diurnal

average rectified solar direction cosine

F = (a/r) 2 ([[u-usll } (7)



wherea andr aremeanandinstantaneoussolardistanceandu andu_areunit vectorsfrom

thecenterof theEarthto thesurfacepointof interestandthesub-solarpoint,respectively.The

insolationpattern,asa functionof latitude0 and mean anomaly M, can be readily computed

once values are specified for the orbital and rotational parameters e, e, and w (Hargreaves, 1895;

Milankovitch, 1920; Vernekar, 1972, 1977; Ward, 1974). Figure (4) illustrates that pattern for

the present orbital and rotational configuration. This pattern can also be written in terms of a

Fourier-Legendre series (Hargreaves, 1895; North and Coakley, 1979; Taylor, 1984; Bills, 1992)

F(p, M; e, e, w) = E Pn(l_) E exp(ip M) Fn,p(e, e, w) (8)

where p = cos(0), and Pn is a Legendre polynomial. The number of terms in the Fourier summa-

tion required to obtain a good representation of the seasonal pattern is greater in the polar regions

than in the tropics and mid-latitudes. The primary difficulty in the polar regions is reproducing

the abrupt change in slope of the insolation curve at times of transition to continual darkness or

continual light. It is also true that the polar regions place the greatest demands on the Legendre

summation, since the spatial pattern also has a discontinuous first derivative at the latitude where

the transition occurs to continual darkness or light.

A significant fraction of the recent work on comparing paleoclimate proxy records to astronomically

forced insolation changes has been based on the published insolation curves of Berger (1978, 1991).

Common practice is to compare computed variations in some particular aspect of the seasonal and

latitudinal insolation pattern (July insolation at 650 N is a particularly frequent choice) with an

observational record of some climatic indicator (6180 variations versus age (depth) in a marine

sediment core, for example). Comparisons of this sort enable estimates of amplitude, phase and

coherence of climatic response to radiative forcing, and have unequivocally demonstrated that orbital

and rotational variations are a dominant cause of climatic change on time scales of 104-106 years.

Despite obvious successes, several problems remain in the general methodology. For example, the

orbit and rotation are both assumed to be perfect clocks and, as a result, data time series are often

"tuned" to the astronomical time scale (Martinson et al., 1982; Shackleton et al., 1990; Hiigren,

1991). However, as we shall see in the next two sections, the rotational variations in particular

do not keep very good time. Also, a number of significant observations remain without adequate

explanation. One of the most perplexing of these is the mid-Pleistocene climatic switch in dominant

oscillation frequency. The 41 kyr oscillation was dominant throughout the early Pleistocene, and

the 100 kyr oscillation has been dominant since the Brunhes-Matuyama magnetic polarity reversal



(or thereabouts),whereasthestandardJuly65° Ninsolationcurveshowsnodiscerniblechangein
spectralcompositionovertheentireinterval.

Theintentofthisarticleisto pointouttheneedforacriticalexaminationofthisstandardscenario,
with theobjectiveof improvingthegeodynamiccomponentof themodelenoughto providebetter

radiativeforcingtimeseriesto thepaleoclimatecommunity,usepaleoclimateproxydatarecordsto

calibrate solid earth responses to applied loads and torques, and explore potential feed-back loops .

Two of the topics of study are perturbations to the simple precession model presented in Equation

(4). The first topic concerns time variations in the precession rate occasioned by glacial mass

transport and resulting changes in tile difference between polar and equatorial moments of inertia

(C-A). These fractional variations can likely reach 1% in magnitude and are fully competitive with

changes in orbital eccentricity in terms of their effect on instantaneous precession rate. The second

topic is the effect of differential precession ill tile deep interior, which is governed by the (poorly

known) characteristics of the inertial and dissipative coupling torques which attempt to keep the

rotation axes of the mantle and core aligned.

The third topic is the potentially significant geodynamic feed-back loop associated with deglacial

mass transport, polar motion and ensuing perturbations to radiative equilibrium temperature pat-

terns. The asymmetrical disposition of major ice sheets and ocean basins relative to the rotation axis

implies that during growth or decay of these ice sheets tile geographic location of the principal axis

of greatest inertia will shift. If the hydrospheric and cryospheric changes are appreciably more rapid

than can be compensated by asthenospheric flow, the rotation axis will shift, possibly by as much

as - 1°. The primary climatic consequence is a shifting of the geographic distribution of continental

and oceanic regions (which differ by a factor of 60 in heat capacity). The effect of a 1° change in

the geographic position of the pole is different (but not necessarily less significant) than a 1° change

in obliquity.

Tile fourth and final topic is a new modelling strategy in which climate proxy data records are

used to estimate linear combinations of insolation pattern Fourier-Legendre coefficients which best

duplicate the observed variations. This approach allows the data variance to be partitioned into

global versus regional effects, and can distinguish between responses to annual average insolation

and those due to seasonal cycle fluctuations.

6



PRECESSIONAL DYNAMICS WITH VARIABLE RATE FACTOR

Statement of Problem

All but the most recent reconstructions of the radiative forcing input to paleoclimate models have

assumed that both the orbital and rotational dynamics could be readily and accurately reconstructed

from their present configurations, via the simple analyses mentioned in the introduction. These

expectations seem well founded in the case of orbital evolution, though the possibility of chaotic

dynamics in the inner solar system (Laskar, 1990; Laskar et al., 1992) does seem to preclude confident

extrapolation beyond 107 years. However, there are a number of processes, working in different

locations and at different rates, which all serve to compound the difficulty of accurately computing

the spin precessional evolution.

An important aspect of this problem is the synergism between geodynamics and paleoclimate.

Better geophysical models are needed in order to accurately reconstruct the radiative input to

climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth

processes on time scales which are difficult to constrain otherwise.

On the longest time scales of interest (107-109 years) the limiting uncertainty is variability in the

tidal transfer of angular momentum from the rotation of the Earth to the orbit of the Moon. At

present, these tidal torques are increasing the length of the day by 22.5 10 -6 sec/year and increasing

the size of the lunar orbit by 3.88 cm/year (Cazenave and Daillet, 1981; Christodoulidis et al.,

1988). Berger et al. (1989) have made a useful first step towards including this effect in climatic

time series. They computed the change in the major precession and obliquity frequencies due to

lunar tidal evolution, assuming that the present rate of tidal energy dissipation is representative of

the past 500 Myr. However, the present rates are considerably higher than the long term average

(Hansen, 1982), largely due to a near resonance between sloshing modes of ocean basins and the

diurnal and semidiurnal tidal periods (Platzman et al., 1981), and apparently compounded by a

contribution from shallow seas (Wunsch, 1986; Dickman and Preisig, 1986). Sedimentary records

which constrain lunar orbital evolution show some promise of resolving this problem (Olsen, 1986;

Williams, 1989a,b; Herbert and D'Itondt, 1990), but the situation is definitely more complex than

is suggested by Berger et al., (1989).

Another parameter which can vary, on rather shorter time scales and in an equally irregular



fashion,is thegravitationaloblatenessof tile Earth(C-A)/C.Thomson (1990) has recently made

three important contributions to the understanding of this source of variability. First, he pointed

out that mass redistribution associated with major glaciations and compensating subsidence and

crustal deformations (Le Treut and Ghit, 1983; Wu and Peltier, 1984) call cause fractional changes

in oblateness of order 10-3-10 -_. Second, he showed that high resolution spectral analyses of

several climatic time series appear to indicate fluctuations of the luni-solar precession rate of this

magnitude, and with a dominant period near 100 kyr. Finally, Thomson pointed out that the

best fit to the paleoclimate proxy data was obtained using a mean lunisolar precession rate 0.6

arcsec/year less than the present observed value. He notes that the resulting value would correspond

rather closely with that expected for a hydrostatic flattening (Nakiboglu, 1982). If these important

results are corroborated, they will demonstrate that important feed-back loops exist in the orbital-

rotational-climatic interactions system, further "up-stream" in the presumed causal chain than has

been previously recognized.

Approach

The research design for this segment of the proposed investigation will address several issues. The

primary focus will be an attempt to resolve two related questions. What are the precessional and

paleoclimatic consequences of small (0.001-0.01) variations in oblateness (C-A)/C, over time scales

of 103-106 years? Can such variations can be confidently inferred from paleoclimatic proxy data?

These questions represent a forward modeling problem and a coupled inverse problem, respectively.

The first question is the easier to answer. Equation (4) describes the variations in orientation of

the spin axis, as viewed in an inertial reference frame. However, since we are primarily interested in

the orientation of the spin axis relative to orbit normal (obliquity) and the apsidal line (longitude

of perihelion), the analysis will be made easier if we first transform to a coordinate system fixed in

the orbit plane. If the rotation matrix is denoted by A, the transformed equation takes the form

(Ward, 1974; Bills, 1990a)

where

ds/dt = {dA/dt A- 1 }S _- a(n. s)(s X 11_) (9)

{dA/dt A -_} = B dI/dt + C dW/dt (10)



B

0 0 0

0 0 1

0 -1 0

(11)

0 cos(I) - sin(I)

C = -cos(l) 0 0 (12)

sin(I) 0 0

Now define two complex quantities: P = sin(I) e/n, which represents components of the orbit

normal on the invariable plane, and S = sin(e) ei*, which represents components of the spin vector

on the orbital plane. In this new notation, Equation (9) can be rewritten in the form

dS/dt + ia S = ib dP/dt (13)

where

a = c_cos(e) + cos(I) df_/dt (14)

b = cos(_)e-ia (15)

The complete solution to a nonhomogeneous linear differential equation consists of both "free"

and "forced" modes of oscillation. The free modes, in this case, correspond to spin precession with

the orbit plane fixed, and the forced modes correspond to motions of the spin axis as it attempts to

precess about the instantaneous orbit normal, while the orbit nornlal itself is precessing. The forced

modes make first order contributions to both e and w, whereas the free modes are only second order

for e but are first order for w. As a result, in tile standard linear series solutions (Berger, 1978;

Ward, 1974), the obliquity terms include only the forced response to changes in (I,ft), whereas the

nodal longitude terms include both forced modes from (I,ft), and free modes with variable (e,w).

The result of variable oblateness will have exactly the same qualitative effect on spin precession as

does a change in orbital eccentricity. Both effect the free modes only. It will thus be rather difficult

to confidently distinguish oblateness variations from unmodeled eccentricity variations. However,

that does not effect the forward modeling aspect of the problem. To the extent that oblateness

variations occur, their effect should be included in the astronomical forcing to climate models.

An iterative approach to the problem seems promising. Orbital variations are uneffected by

oblateness and need not directly concern us. As a first step, standard rotational variations (including

eccentricity, but neglecting oblateness variations) will be used to generate radiative input to an

energy balance climate model (North et al., 1981; Short et al., 1991), with a coupled ice-sheet model
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(DeBlonde and Peltier, 1990). Time variations in oblateness can be simply estimated from the

surface load and internal compensation. The resulting oblateness history is then fed back into the

rotational calculation and the entire process is repeated. The inner-most loops of this algorithm are

somewhat similar to the model of Peltier (1982). However, he did not allow the mass loading to

influence the radiative forcing.

Even fairly modest changes in oblateness are rotationally significant. For comparison, the eccen-

tricity perturbation influences precession rate via the factor (a/b) 3, where a and b are semimajor

and semiminor axes, respectively. This amounts to (1-e2)-3/2, which differs from unity by only

0.0054 for a near-maximum value of e = 0.06,
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DIFFERENTIAL PRECESSION: INERTIAL AND DISSIPATIVE COUPLING OF

THE MANTLE AND CORE

Statement of Problem

The hydrostatic figure of a planet represents a compromise between gravitation, which attempts

to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to its higher

mean density, the core of the Earth is more nearly spherical than the mantle. The direct luni-solar

precessional torques on the core will thus be inadequate to make it precess at the same rate as the

mantle. In fact, the core oblateness is only about 3/4 that required for coprecession with the mantle

(Smith and Dahlen, 1981). However, it is clearly the case that the core and mantle precess at very

nearly the same rate (Stacey, 1973). A variety of different physical mechanisms contribute to the

torques which achieve this coupling, but a purely phenomenological partitioning is useful. The net

torque can be described as a sum of inertial torques, which are parallel to (Xm × Xc), and dissipative

torques, which are parallel to (_'m - _). Here, Xc and X,n are the rotation vectors of the core and

mantle, respectively. The two types of torques have qualitatively different results: inertial torques

cause the core and mantle axes to precess at fixed angular separations and on opposite side of their

combined angular momentum vector, whereas the effect of dissipative torques is to reduce the angle

between the axes.

On short time scales it is appropriate to consider the core to be an inviscid fluid constrained

to move within the ellipsoidal region bounded by the rigid mantle (Poincare, 1910; Toomre, 1966;

Voorhies, 1991). The inertial coupling provided by this mechanism is effective whenever the ellipticity

of the container exceeds the ratio of the precessional to rotational rates. If the mantle were actually

rigid, or even elastic (Merriam, 1988; Smylie et al., 1990), this would be an extremely effective type

of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can

accommodate the motions of the core fluid (Wu, 1990). The inertial coupling torque exerted by the

core on the mantle will have the form

Ti = ki[X_ × Xc] (16)

A fundamentally different type of coupling is provided by electromagnetic or viscous torques

(Rochester, 1962; Sasa_ et al., 1977; Kubo, 1979). The dissipative coupling torque exerted by the
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coreontile mantlewill havetheform

T_= k_[x.- xj (17)

This type of coupling is likely to be most important on longer time scales. In each case, the mantle

exerts an equal and opposite torque on the core. The response of the coupled core-mantle system

to orbital forcing is given by (Goldreich and Peale, 1970; Ward and DeCampli, 1979; Bills, 1990b).

ds_/dt = _(n. s_)(sm × n) - _.,(s_ - s_) - Vm(Sr_× s_)
(18)

dsc/dt = (_c(n . sc)(s¢ x n) + 13_(sm- so) + 7¢(s., x s_)

where a,, is similar to c_ above, except that only mantle moments Am and C,n are included, and

/3m = }.d/C,, t'
(19)

"_m = _/Cr_ V2

where v is tile mean rotation rate.

Approach

The research design for this segment of the proposed investigation would consist of several parts.

The objectives and methods are very similar to those described in the previous section. In this

case, however, the intent would be to determine the precessional and paleoclimatic consequences of

non-rigd core-mantle coupling, and to explore the possibility that useful constraints on the coupling

parameters can be obtained from paleoclimatic proxy data.

A number of estimates already exist for the strengths of inertial and dissipative coupling torques

(Toomre, 1966; Roberts, 1972; Rochester, 1976; Loper, 1975; Stix, 1982). By most accounts, the

inertial torque is " 5 102° N m, and the various viscous and magnetic dissipative torques are 102-104

times weaker. However, the inertial torque estimates are simply based on the premise that the core

nmst coprecess with the mantle.

Solutions t.o the coupled precession problem can be found in a form analogous to Equation (11)

for the rigid precession problem. The principle difference in the present situation is the increased

richness of the free and forced oscillation spectra. There are modes in which the core and mantle

precess together, and other modes which reflect differential precession. It is clear that the most

climatically relevant behavior is the precessional motion of the mantle. Thus the chief interest, from

that perspective, will be to explore the behavior of the mantle precession modes over plausible range

of parameter values. Within the geophysically prescribed range of parameter space, are there any

12



climatically significant perturbations to obliquity or longitude of perihelion occasioned by partially

decoupling the core from the mantle?

It is very clear that the mantle and core exhibit differential motions on nutational time scales

(Mathews et al., 1991; Mathews and Shapiro, 1992). However, one of the difficulties in constructing

a differential precession model which is truly useful for paleoclimatic studies is that the precise

geodetic techniques, which are able to constrain nutation amplitudes within a few milliarcseconds,

still have short enough time spans that most of the differential precession modes of interest are still

indistinguishable from rigid rotation.
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DEGLACIAL POLAR MOTION AND ABRUPT CLIMATE CHANGE

Statement of Problem

Recent models of the surficial mass transport associated with the last deglaciation (Tushingham

and Peltier, 1991; Nakada and Lambeck, 1988) suggest that the magnitude of the flow and its

departure from axial symmetry were both great enough that, if it were not closely balanced by

internal flow and deformation, it would cause a shift in the body-fixed location of the axis of greatest

inertia, by an amount of order lo. If the pole were to move by a significant fraction of a degree, the

resulting displacement of the geographic pattern of land and water relative to the incident radiation

pattern would cause a climatic perturbation which could either augment or retard the progress of

deglaciation, depending on the spatio-temporal pattern of the perturbation. The potential thus

exists for a previously unexplored feed-back loop in the climate system.

During the peak of the last deglaciation, there was a brief but significant return to full glacial

conditions. This Younger Dryas climatic event is perhaps best documented in the North Atlantic

(Ruddiman and Mclntyre, 1981; Broecker et al., 1988), but appears to have been global in scale

(Currey, 1990; Engstrom et al., 1990; Gasse et al., 1991). Though the broad scale timing of the

deglaciation is consistent with astronomical forcing, the Younger Dryas perturbation was too brief to

be a linear response to the classical orbital or rotational variations. However, neither the magnitude

nor duration is a priori inconsistent with a response to deglacial polar motion. The objective of this

portion of the proposed investigation would be to examine the geodynamic and climatic consequences

of deglacial mass flow.

Approach

The usual geodynamic modeling approach to deglacial polar motion is to use historical observations

of the rate and direction of polar motion during this century, in conjunction with estimates of the

surficial mass flow, to derive constraints on deep Earth structure models. However, these same

models, once they have been calibrated, can be made to deliver estimates of the rates and directions

of polar motion which occurred during the deglaciation. The magnitude of deglacial polar motion

depends rather sensitively on the rate and spatial pattern of surficial mass transport and on the
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internalstructureof theEarth,asreflectedin thespectrumof relaxationtimesfor surficialloads

andbodyforces(Sabadiniet al.,1982;WuandPeltier,1984;Spadaetal., 1992;Ivinset al., 1992).
A classof climatemodelswhichisverywellsuitedto theproposedinvestigationsincorporates

spatialandtemporalvariationsin anumberofcomponentsoftheglobalenergybalance.Thebasic

equationwhichgovernstheenergybalanceis(Northetal., 1981)

OT
A+ aT+C--_ - V. (DVT) = C2aF (20)

The first two terms on the left parameterize outgoing radiation, the third term represents storage

of heat and the fourth term represents divergence of the heat flux. The right hand side is the amount

of incident radiation that gets absorbed.

Values for the outgoing radiation parameters (A = 210 W m -2, B = 2.I W m -2 K-l; Short

et al., 1984) can be estimated from satellite data. The heat capacity C is large over water and

small over land (Cw/B = 4.6 years, Ca = C_ /60; North and Coakley, 1979). Though much of the

lateral transport of heat is accomplished by winds and ocean currents, these effects can be modeled

by a diffusive transport, with D/B = 0.310 (North, 1975; Wyant et al., 1988). For the incident

radiation, Q = S/4 = 342 W m -2 (Schatten and Orosz, 1990), F is the spatial and temporal pattern

of projected area, and a (0.75, Stephens et al., 1981) is the co-albedo.

Solutions to this equation with specified forcing can be readily obtained in the spectral domain,

with spatial patterns represented by spherical harmonic series and temporal patterns represented by

Fourier series. If A, B and D are assumed to be constants (no spatial or temporal variations), the

base state solution to Equation (20) is simply

T, mv= W-'[Q G anmv /mop] (21)

where G (whose 9 indices have been suppressed for typographical clarity) is a coupling constant for

products of spherical harmonics (Rotenberg et al., 1959; Dill, 1991) and

W = [B+n(n+l) D+ipGC,,w] (22)

In the same notation, the temperature perturbation 6T due to a small change in radiative forcing

6F (associated with e, e, or _v) is

6r.mp = w-'IQ 6' a ....p 6F,,0pl (23)

Similarly, the temperature perturbation due to a change 6C in the distribution of land and water
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relative to the rotation axis (associated with deglacial polar motion) is

6Tnmv = W-I[-ipG 6Cnmp Tnmp] (24)

Specific questions which should be addressed include:

• What is the likely history (magnitude and direction) of polar motion induced during deglacia-

tion?

• How does the climatic impact of that polar motion compare in magnitude and spatio-temporal

pattern with the impact, of a 1° change in obliquity, or a 1% change in orbital eccentricity?

• Is the timing and magnitude of the climatic impact such that it would significantly perturb

the deglaciation?

• Is this feed-back loop a viable contributor to the Younger Dryas climatic event?
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FOURIER, LEGENDRE, AND MILANKOVITCH: ESTIMATING DIAGNOSTIC

SEASONS AND LATITUDES FROM CLIMATE PROXY RECORDS

Statement of Problem

As was mentioned in the introduction, a weakness of previous paleoclimate models is the com-

mon practice of using an overly simplistic representation of the insolation forcing (values for July

at 65 ° N are a particular favorite) when attempting to reconcile computed variations in orbital and

rotational parameters with observed climate proxy records (Hays et at., 1976). An alternative ap-

proach, which shares many of the same problems is to use a linear combination of the orbital and

rotational parameters as input to tile models (Imbrie and [mbrie, 1980). A problem in using either

a linear combination of orbital and rotational parameters, or a localized spatio-temporal measure

of insolation, as a proxy input to climate models is the difficulty in choosing which single value to

use (Broecker, 1966; Broecker and Van Donk, 1970). Furthermore, the two alternative formats for

making the choice (time and location versus orbital and rotational parameter combination) are not

equivalent. It is clear that choice of a specific latitude and time of year to represent the insola-

tion pattern implies a unique (though non-linear) combination of orbital and rotational parameters.

However, the converse is not necessarily true. For some combinations of (e,e,_) there is no corre-

sponding location and time of year, at which the insolation pattern will be dominated by the selected

combination of parameters.

In comparing calculated insolation pattern variations with an observed time series of some climate

proxy (marine sediment oxygen isotope variations, for example), it is useful to have a simple physical

model in mind. The observed isotopic anomalies are, to first order, due to two effects; global ice

volume fluctuations and local to regional scale temperature variations (Emiliani and Shackleton,

1974; Kahn et al., 1981). These effects differ in two important ways. The ice volume effect is

global in scale and its first time derivative should be proportional to insolation driven temperature

changes. In contrast, the direct isotopic temperature effect is local to regional in scale, and is directly

proportional to insolation driven temperature changes.
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Approach

A modeling strategy which addresses several of these points involves estimating the linear com-

bination of Fourier-Legendre coefficients of the insolation pattern which best reproduces the data

records. This approach provides the opportunity to partition observed variations into global and

regional effects. It also provides information on which aspects of the insolation pattern variations

are most diagnostic of the observed proxy variations. If July insolation at 65 ° N is truly signifi-

cant in a particular data record, the selected amplitudes for the Fourier-Legendre coefficients should

clearly reflect that fact. Alternatively, if the amplitude of the seasonal cycle in the polar regions or

tropics, or the annual mean equator to pole insolation contrast, or any other linear functional of the

insolation pattern is most diagnostic, the analysis will indicate that fact.

As an example of a situation in which this approach could be used, Park and Maaseh (1992)

have recently compared the climate proxy record provided by 6180 records from two long, high

resolution cores (ODP 677 from the eastern equatorial Pacific (Shaekleton et al., 1990) and DSDP

607 from the mid-latitude North Atlantic (Ruddiman et al., 1989; Raymo et al., 1989) with a

new estimate of insolation at 650 N (Berger and Loutre, 1991). The three data records analyzed

(benthic and planktonic records at ODP 677, benthic only at DSDP 607) have much in common,

but there are also interesting, and possibly significant, differences. It is clear that variations which

are common to several locations are more likely diagnostic of global climatic variations. Differences

between locations, or differences between benthic and planktonic records at a single location provide a

different and complementary view of the climatic response to insolation forcing. Figure (5) illustrates

a 2 106 year history of variations in the amplitudes of the Fourier-Legendre coefficients and Figure

(6) compares the DSDP 607 and ODP 677 data with a standard insolation curve.

Several specific questions should be addressed. The first category of questions relate to calibration

and characterization of technique.

• Do the Fourier-Legendre coefficient time series form an orthogonal basis?

• What output time series would correspond to a spatio-temporal delta function (summer solstice

at 65 ° N, for example)?

• What is the resolution (Ap,AM) versus data series length?

• ltow does the resolution depend on other factors besides the data string length?
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• Are two short data strings from significantly different locations better than a single data string

of equivalent aggregate length?

The next level of question pertains to the physical meaning or significance of a particular linear

combination of Fourier-Legendre coefficients. Any such linear combination is equivalent to a spatio-

temporal pattern of some sort. The result obtained with a finite resolution data structure will

represent the convolution of the actual physical response with the data resolution kernel. How

do errors in data chronologies map into errors in resolved spatio-temporal patterns of diagnostic

insolation?

The final level of question relates to understanding the implications and significance of results

obtained by this algorithm from actual data series.

• Using a variety of oceanic and continental paleoclimatic data series, what are the resolved

patterns of climatically diagnostic insolation?

• What physical mechanisms are implicated?

• Are significantly different patterns obtained from data strings of different age?

• Is there a single pa_tern which duplicates the observed increase it_ amplitude of the 100 kyr

signal after the Brunhes-Matuyama magnetic reversal?
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Introduction

The insolation parameters of the Earth depend on its orbital parameters and of the pre-

cession and obliquity. Until 1988, the usually adopted solution for paleoclimate computation

consisted in (Bretagnon, 1974) for the orbital elements of the Earth, which was completed by

(Berger, 1976) for the computation of the precession and obliquity of the Earth. In 1988, I

issued a solution for the orbital elements of the Earth, which was obtained in a new manner,

gathering huge analytical computations and numerical integration (Laskar, 1988). In this

solution, which will be denoted La88, the precession and obliquity quantities necessary for

paleoclimate computations were integrated at the same time, which insure good consistancy

of the solutions. Unfortunately, due to various factors, this latter solution for the precession

and obliquity was not widely distributed (Berger, Loutre, Laskar, 1988). On the other side,

the orbital part of the solution LaB8 for the Earth, was used in (Berger and Loutre, 1991)

to derive an other solution for precession and obliquity, aimed to climate computations. I

Mso issued a new solution (La90) which presents some slight improvements with respect to

the previous one (Laskar, 1990). As previously, this solution contains orbital, precessional

and obliquity variables. In order to make it widely available, it was distributed during this

meeting on magnetic support and can also be obtain directly by request to the author at

laskarCfriap51.bitnet. In the present tMk, I will discuss the main features of this new

solution.
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The orbital solution La90

The orbital solution is obtained by the numerical integration of an extended averaged system,

which represents the mean evolution of the orbits of the planets. All the 8 main planets of the

solar system are taken into account, as well as lunar and relativistic main perturbations. The

use of numerical integration for the computation of the solution of the secular system is one of

the reasons for the good quality of this solution, which can be checked by comparison with the

available ephemeris over a short time scale (Laskar, 1985, 1986, 1988). In (Laskar, 1988), the

solution LaSS was represented in quasi-periodic form over 10 Myr, but these representations

are slowly convergent, which prevents a good accuracy for the solution. Later on, I understood

fully the reason of this slow convergence, which is due to the presence of multiple resonances

in the secular system of the inner solar system. Due to these resonances, the motion of the

solar system is chaotic, and not quasi-periodic, as was demonstrated by the computation of

its Lyapunov exponents which reachs 1/(5 Myr) (Laskar, 1989). This implies that it is not

possible to give any precise solution for the motion of the Earth over more than about 100

Myr, and most probably, ephemeris can only be given for about 10 Myr with good precision.

Several integrations of the secular system of the solar system were made over 200 Myr and

400 Myr. The origin of the chaotic behaviour was identified, and is due to the presence of

secular resonances in the inner solar system (Laskar, 1990). With a new numerical method,

it was possible to show that the chaotic zones were the solar system belongs is large in the

directions of the proper modes related to the inner planets. This is an indication that these

results are stable against small changes of initial conditions or model.

One of the main consequence of interest for paleoclimate studies, is the fact that the main

frequencies of the orbital motion of the planets can no longer be considered as constants, but

are slowly evolving with time. The measured shift in frequency amount about 0.2 arcsec/year

over 200 Myr for g3 and g, while for gs it is of only 0.00002 arcsec/year. It should be stressed

that, as the motion is chaotic, the computed solution cannot be considered as close to the

real solution over more than a few 10 Myr, but it is reasonable to assume that the drift

in frequency is of the same order of magnitude over the 200 Myr. One should nevertheless

mention that over this time span, the change of the precession main frequency, due to tidal

effects in the Earth-Moon system, are probably more important (Berger et al., 1989).

Since, direct numerical integrations over 3Myr backward and forward were issued by (Quinn

et al., 1991), including also solutions for precession and obliquity (QTD6). The orbital

solutions have been compared with La90. The two solutions present very small discrepancies

over 3Myr, and the existence of the secular resonances in the inner solar system is confirmed

(Laskar, Quinn, Tremaine, 1991). The very close agreement of the two orbital solutions over

3Myr gives the confirmation that the Earth parameters are now very well known over this

time span, and insure that the orbital solution La90 can be used with confidence over 10 Myr

for paleoclimate use. The precession and obliquity solutions present some small discrepancies

which are probably due to the presence of the tidal effect in the Earth-Moon system in the

QTD6 solution.

36



Precession and Obliquity in the La88 and La90 solutions

The precession quantities are completely determined by the two motions of the equatorial

and ecliptic pole. The motion of the ecliptic is given by the secular theory La90 (Laskar

1990); the precession quantities are integrated at the same time, using the equations of the

theory of the rigid Earth of Kinoshita (Kinoshita 1975, 1977, Laskar, 1986). The equations

for the general precession in longitude PA, and for the obliquity of the date ¢ are then

with :

and :

dpA
-- R(c)-cote[ A(p,q)sinpA + B(p,q) cospA] - 2 C(p,q)-pg

dt

de
- B(p, q) sinpA + A(p, q) cos pA

dt

A(p, q) --

B(p, q) =

2

x/1 _ p2 _ q2

C(p, q) ---- (q15 - pcl)

(cl + P(ql_ - pet))

(15 - q(ql5 - PCl))

3k2mM 2C- A- B

R(e)- a3Mw 2C cos 2e(Mo - M2/2)cosc + M, sin--_

2c- A- B (6cos _ 1)]
mE + raM wr/,fl 2C J

3k2m® 2C - A -- B
[Socos

"h a_w 2C

where p = sin(i/2)sin(f2), q -- sin(i/2)cos(_/), (i is the inclination of the Earth with respect

to a fixed ecliptic, and f/ the longitude of the node). R(e) is the secular term due to the

direct lunisolar perturbations. The quantities M0, M1, M2, Ma, So, and $2 depend only on the

orbital elements of the Moon and the Sun. The pincipal moments of inertia of the Earth are

denoted by A, B, and C, and the angular velocity of the Earth is w . The masses of the Sun,

the Earth, and the Moon are denoted by m®, mE, and raM; the sideral motion of the Sun and

of the Moon by n O and nM; and the mean motion of the node of the Moon by ha. The other

terms present in equation (23) represent the effects of the secular variation of the ecliptic,

caused by the secular planetary perturbations. The numerical values of M0, M1, M2,5/_3 are

given in (Kinoshita, 1977):

M0 = 496303.3 × 10 -6

M1 = -20.7 × 10 -6

M2 = -0.I x 10 -6

M3 = 3020.2 x 10 -6
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and from (Laskar, 1986),

1 -3/2
So = _(1 - e 2) - 0.422 x 10 -6

The following numerical values, were also used (see Laskar, 1986 for complete references) •

n M

rt_

aM" =

k =

+ raM) =
m®/rnE =

474 659 981.597 57 "/yr

17 325 593.4318 "/yr

-69 679.193 6222 "/yr

384 747 980.645 m

0.017 202 098 95

328 900.5

332 946.0

The quantity pg is the geodesic precession due to the general relativity,

pg = 0.019188"/yr

The value of the dynamical ellipticity ED = (2C - A - B)/2C = 0.00328005 is obtained by

adjustment at the origine J2000 to the values of the speed of precession and obliquity give

by the IAU (Grenoble, 1976) :

p = 50.290966"/yr

eo = 23°26'21"448

For t = 0 , we have PA = 0 ,_ = e0 , i = f_ = 0 ,and thus :

= R(e0) - 2 lb =0 - pg cot e0

These formula for precession gives a solution for precession and obliquity in agreement with

the requirements of high accurate ephemeris (Laskar, 1986) and are thus best suited for

paleoclimate computations.

Descripion of the files of the solution La90

earOm5.dat

preOm5.dat

ear5mlO.dat

pre5mlO.dat

The different files which are distributed are

orbital elements 0 to -5 Myr

obliquity and precession 0 to -5 Myr

orbital elements -5 to -I0 Myr

obliquity and precession -5 to -I0 Myr

All the elements are referred to the ecliptic and equinox J2000. The starting date is J2000.

All angles are in radians

The ear0mS.dat and ear5m10.dat files contains T,k,h,q,p
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T = time from J2000in 1000yr
k = cos( )
h = e sin(w)

q -- sin(i/2) cos(l-/)

p = sin(i/2) sin(a)

where e is the eccentricity of the Earth, i denotes the inclination of the Earth, w the longitude

of perihelion, and Q the longitude of the node of the Earth with respect to the fixed ecliptic

and equinox J2000.

The pre0mS, dat and pre5ml0, dat files contains T, ¢, PA where

T is the time from J2000 in 1000yr, _ is the obliquity of the date (mean equator of date with

respect to mean ecliptic of date), and PA is the general precession in longitude.

All quantities generally used for climate studies are derived easily from these fundamental

quatities. The eccentricity of the Earth is obtained by

e = v/k 2 + h 2

And the longitude of perihelion from moving equinox is

_r

w =_+PA

The climatic precession e cos(a*) is thus equal to the real part of z*exp(ipx), where z = k+ih.

Conclusions

The present solution La90 for orbital and precession elements for the Earth over can be used

for as an ephemeris paleclimate computations over 10 Myr. On this time span, the fact that

the motion of the solar system is chaotic is not perceptible on this level of precision. This

new solution present some improvements from my previous solution LaSS (Laskar 1988). The

orbital solution is in very good agreement with the recent numerical integrations of (Quinn et

al., 1991) . Over the geological time scales exceeding 100 Myr, there is no hope to obtain such

an ephemeris, due to the chaotic behaviour of the solar system, but one can assume that for a

few 100 Myr, the slow diffusion of the astronomical frequencies observed during the 200 Myr

integrations remains of about the same order. This should not be granted for billion years

computations and more computations on the diffusion process in the solar system are clearly

needed. More, due to the changes in frequencies, and presence of secular resonances in the

orbital forcing, more extended studies of the resulting influence on the rotational evolution of

the Earth should be done. Studies on the long term evolution of the Earth-Moon system are

also needed in order to improve our knowledge of the rotational evolution of the Earth. The

geological records, assuming that a good accuracy in the determination of the fundamental

frequencies could be achieved, would then be the only possible observations for tracking the

long term past evolution of the solar system for time span longer than 100 Myr.
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1 Overview

A theory for the long-term rotational motion of the quasi-rigid Earth has been constructed

by numerical integration. The theory spans 72000 years centered about 1968 A.D., and

provides accurate rotational and positional data for the Earth in the recent past and the

near future. Details are provided in [6]. The physical model is termed dynamically consistent

because developments for the active forces and torques are truncated based solely on their

magnitudes regardless of their origin. The model includes all appropriate forces and torques

due to the geopotential and tidal effects as well as lunisolar and planetary contributions.
The elastic and inelastic deformations due to tidal action were too small to affect the mass

properties of the Earth at the truncation level of the model. However, long-term dissipative

effects of the tidal forces and torques were not negligible. These considerations gave the

model its quasi-rigid characterization. The numerical output provided both rotational and

orbital-element data. The data have been fitted throughout the 72000-year range using

Chebyshev polynomial series. These series are quite portable and are available upon request.

The project was based on the desire to provide researchers with a data base of ac-

curate orbital and rotational parameters which are needed as the astronomical input to

(paleo)climatology theories. Current theories [2] use only a rigid-Earth model and are

analytical in nature. In addition, they are not completely consistent in their physical mod-

els. To keep pace with the accuracy of current observational data, the numerical theory

maintains an accuracy on the order of 0.01 mas. The physical model includes:

1. rigid-body torques produced by the Moon, Sun, Venus, Jupiter and Saturn

2. tidal torques due to the Moon and Sun

3. effects due to Earth rotation/lunar orbit coupling

4. point-mass effects arising from the orbital motion of a 10-body planetary system

(counting the Sun and Moon with Pluto excluded)

5. a 4x 4 geopotential field

41



Thenumericalintegrationwasconductedusinga 10th-orderAdams-Moultonpredictor
with an lira-order Adams-Bashforthcorrector. This combinationproduceda local
truncationerror E _ h 1_'. The stepsize h was set to 1/50 day. The selection of h was

based on error comparisons with output generated by extended precision (32 place)

integrations.

The major results are displayed graphically in [6]. The data give an average precession

rate of -50.45_l/year. The present adopted IAU value is -50.29tW/year, and that of

the best analytical theory ([2]) is -50.41"/year. The output for obliquity (relative to
the invariable plane of the solar system) and the precession index 1 esinc5 are shown

on the following page.

2 Future Work

The data base is not nearly long enough to be of great use to paleoclimatologists. Part

of what is needed as an accurate theory that extends backward approximately 1 million

years. (The data would thus span at least two of the 400,000-year Milankovitch cycles).

A hybrid numerical integration procedure would be required--one that effectively

suppresses the growth of round-off error. Such a procedure has been developed by

Panovsky and Richardson [4] and has been used successfully in a multi-million-year

integration of the planetary system [5l. Data spanning a much longer time frame

would allow the retrieval of an accurate (geologically-recent) history for the lunar
retreat rate.

To produce a data base spanning a much greater time frame, the quasi-rigid model

for the Earth in the present theory would have to be discarded in favor of some sort

of radially-dependent viscoelastic model which includes core-mantle coupling (gravi-

tational and pressure) and mass-property variations. The new model should include

changes in continentality from plate motions as well as the long-term effects of the

oceans and glaciation. It may be possible to devise a model that is accurate over the

long-term by adjusting parameters so that the (concocted) tidal dissipation provides

lunar retreat rates consistent with the various measurements that have been reported

in the recent literature. The extremes of these measurements now span 650 million

years (see [1] and [7]).

To push a numerically-integrated theory backwards through tens of millions of years

would require the development and use of a semi-numerical theory applied to a much-

improved physical model. Such a theory is based on the numerical integration of

the equations of motion after they have been analytically averaged at least through

second order. A similar process has been successfully implemented by Laskar [3] in his
recent investigations of the long-term motion of the eight-body planetary system. The

averaging process would remove all high-frequency effects and leave only the secular,

long-period, and dominant non-linear effects. The numerical integration could then

proceed with stepsizes on the order of weeks or months instead of hours.

aThe parameters e and D are respectively, the orbital eccentricity of the Earth and the Earth's argument
of perihelion measured from the moving Vernal equinox.
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Variations of the Milankovitch Frequencies in
Time.

Loutre M.F. and Berger A.

1 Pre-Cenozoic Times

The sensitivity of the amplitudes and frequencies in the development of the Earth's

orbital and rotational elements involved in the astronomical theory of paleoclimates

(eccentricity, obliquity and climatic precession), to the Earth-Moon distance and con-

sequently to the length of the day and to the dynamical ellipticity of the Earth has

been discussed for the last billions of years (Berger et al., 1989a,b,c; Berger and Loutre,

1991).

The shortening of the Earth-Moon distance and of the length of the day, as well

as the lengthening of the dynamical ellipticity of the Earth back in time induce a

shortening of the fundamental astronomical periods for precession (the 19-kyr and 23-

kyr quasi-periods becoming respectively 12.6 and 14.3-kyr at 2 10 _ yr BP) and obliquity

(the 41-kyr and 54-kyr quasi-periods becoming respectively 19.6 and 22.1-kyr at 2 109

yr BP) (Figure 1). At the same time, the amplitudes of the different terms in the

development of the obliquity are undergoing a relative enlargement of about 50% at

2 109 yr BP but the independent term is increasing very weakly (less than 0.1%). In

other words, the value of the obliquity, which lies within a range of 21.°7 to 24.°9

over the Quaternary was restricted to a range of 22.°5 to 24.°1 at 2 109 yr BP. On

the other hand, the amplitudes in the development of the climatic precession do not

change. Moreover, these changes in the frequencies and amplitudes for both obliquity

and climatic precession are larger for longer period terms. Finally, the periods in the

eccentricity development are not influenced by the variation of the lunar distance.

But the motion of the solar system, especially of the inner planets, was shown to

be chaotic (Laskar, 1990). It means that it is impossible to compute the exact motion

of the planets over more than about 100 Myr, and the fundamental frequencies of the

system are not fixed quantities, but are slowly varying with time. As long as we consider
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the most important terms, the maximum deviation from the present-dayvalueof the
19-kyr precessionalperiod due to the chaotic motion of the solar systemonly doesnot
reachmore than afew tens of yearsaround80Myr BP (Bergeret al., 1991). Therefore
the shortening of the obliquity and climatic precessionperiods is mostly driven by the
changein the lunar distanceand the consequentvariations in the dynamical ellipticity
of the Earth's angular speed.

At first sight, the deviation in the period for the eccentricity can be neglected, as the

chaotic behaviour of the solar system implies a relative change of the main periods (404,

95 and 123 kyr-periods respectively) by less than 0.2%, 1.4% and 1.9% respectively,

this maximum changes being achieved around 80 Myr BP. This implies, in particular,

that the eccentricity periods used for Quaternary climate studies may be considered

more or less constant for pre-Quaternay times and equal to their Quaternary values.

2 The Quaternary Period

The sensitivity of the frequencies of these astronomical elements to the dynamical

ellipticity of the Earth has also been investigated for the Quaternary period (Dehant

et al., 1990). According to the model used, the modification of the distribution of the

masses on and inside the Earth during full glacial conditions has a weak influence on

the moments of inertia of the Earth and consequently on the astronomical periods:

more precisely the dynamical ellipticity of the Earth remains more or less constant for

the isostatic equilibrium case (i.e. a subsidence of about 3/10 of the height of the ice

sheet). For larger subsidences, the variation of the dynamical ellipticity of the Earth is

positive and for smaller ones, it becomes negative, reaching 1.5% at the maximum. For

a 1% increase of the dynamical ellipticity of the Earth, the precessional quasi-periods

(19 and 23 kyr) become 18.9 and 22.8 kyr while the quasi-periods of the obliquity (41
and 54 kyr) become 40.4 and 52.9 kyr.

3 Future research

The determination of the Earth-Moon distance and/or the lunar recession rate

for pre-Cenozoic times must be improved by taking into account the repartition

and the displacement of the oceanic basins and of the continents in order to
obtain a better time scale.

A full model of the Earth interior would give more accurate values for the dy-

namical ellipticity of the Earth and the Earth's angular speed of rotation taking
into account the repartition of the masses on and inside the Earth.

The model used to compute the variation of the dynamical ellipticity of the Earth

due to the waxing and waning of ice sheets could be improved by considering the
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- geographical location and height of the ice sheets

- subsidence and rebound of the continents not covered by ice

- subsidence and rebound of the marine lithospere

A model accounting for the transient response to the ice sheet loading, instead

of the snapshot reconstruction as used in the present study where we considered

only full (maximum) glacial conditions and plain interglacials, would allow us to

simulate the time evolution of the global effects of the ice sheets formation and

melting, taking into account lagging subsidence and rebound of the lithosphere.

Improvements in the interpretation of past proxy data and refinement of the time

scale would allow to provide an independent determination of the astronomical

frequencies found in pre-Cenozoic time series, allowing to validate and calibrate
the astronomical models.
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Obliquity and Climatic precession
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Figure 1: Estimated values of the periods of the orbital parameters (top) involved

in the astronomical theory of paleoclimates considering the effect of the variations

of the Earth-Moon distance (bottom) and of the Earth's figure and rotation (Berger

and Loutre, 1991). It must be noted that the discontinuity in the rate of change of

the astronomical periods reflects the artificial change in the value of the Earth-Moon

recession rate taken to be 10 -9 m s -1 for the last 590 Myr, and 0.43 10 -9 m s -1 prior

to 590 Myr BP (Walker and Zahnle, 1986; Berger and Loutre, 1991).

48



MAGNETIC SUSCEPTIBILITY VARIATIONS IN LOESS SEQUENCES

AND THEIR RELATIONSHIP TO ASTRONOMICAL FORCING
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The long, well-exposed and often continuous sequences of loess found throughout the world

are generally thought to provide an excellent opportunity for studying long-term, large-scale

environmental change during the last few million years. In recent years, the most fruitful loess

studies have been those involving the deposits of the loess in China. One of the most intriguing

results of that work has been the discovery of an apparent correlation between variations in the

magnetic susceptibility of the loess sequence and the oxygen isotope record of the deep sea. This

correlation implies that magnetic susceptibility variations are being driven by astronomical

parameters. However, the basic data have been interpreted in various ways by different authors,

most of whom assumed that the magnetic minerals in the loess have not been affected by post-

depositional processes. Using a chemical extraction procedure that allows us to separate the

contribution of secondary pedogenic magnetic minerals from primary inherited magnetic minerals,

we have found that the magnetic susceptibility of the Chinese paleosols is largely due to a

pedogenic component which is present to a lesser degree in the loess. We have also found that the

smaller inherited component of the magnetic susceptibility is about the same in the paleosols and

the loess. These results demonstrate the need for additional study of the processes that create

magnetic susceptibility variations in order to interpret properly the role of astronomical forcing in

producing these variations.

The Chinese loess plateau stretches from 35°N to 40°N and from 100°E to 115°E and covers an

area of 500,000 sq. km. The loess deposits are typically 150 m thick, and they appear to represent

continuous deposition of wind-blown, silt-sized material during the past 2.4 million years. The

source of this material is believed to be glacial outwash in the regions to the west and north of the

plateau (Kukla and An, 1989). More importantly, the loess sequence contains many interbedded

paleosols which attest to the existence of significant and cyclic climatic fluctuations. The most

recent, comprehensive description of the units of the loess sequence is that of Kukla and An

(1989), who recognized six stratigraphic units. From youngest to oldest, these are the Holocene
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BlackLoamFormation,theMalanFormation,theUpperLishi Formation,theLowerLishi

Formation,theWuchengFormation,andthePlioceneRedClay.

On thebasisof paleomagneticstudies(HellerandLiu, 1982;Kukla, 1987),thecontact

betweentheWuchengFormationandtheRedClaylayerhasbeendatedat 2.4million years,and
theBrunhes/Matuyama,OlduvaieventandJaramilloeventhaveeachbeenidentifiedin the

sequence.

Oneof theprimaryparametersthathasbeenusedin thestudyof the loess/paleosolsequence
hasbeenmagneticsusceptibility.Becausethemagneticsusceptibilityof the loessis low whilethat

of thepaleosolsishigh,thisparameterisconsideredaneffectiveproxy for thequantitativestudyof
theclimatic fluctuationsrecordedbytheloess/paleosolsequence(HellerandLiu, 1984;1986).

Thefirst comprehensivestudyof magneticsusceptibilityvariationsin the loess/paleosol

sequencewasthatof HellerandLiu (1984)whopointedout thatthereappearedto beastrong

correlationbetweenthemagneticsusceptibilityrecordandtheoxygenisotoperecordof deep-sea

coresfrom theequatorialPacificOcean.TherelationshipwasfurtherexploredbyKukla et al.

(1988) who published detailed magnetic susceptibility records from the loess/paleosol sections at

Xifeng and Luochuan. These authors presented data to support their belief that the time required

for the deposition of a particular loess unit was directly proportional to the product of the thickness

of the unit and its magnetic susceptibility. They used this idea to construct a time scale that was

independent of the oxygen isotope curve. On this time scale, the variations in magnetic

susceptibility corresponded very closely to the variations in the oxygen isotope record from the

deep sea, implying an interdependence among the rate of influx of loess, the volume of land-based

ice, and the global climate. Additional evidence for astronomical forcing of the magnetic

susceptibility record was provided by Wang et al. (1990).

A key component in the model used by Kukla et al. (1988; 1990) to account for the magnetic

susceptibility variations was the assumption that the source of the magnetic susceptibility signal

was a constant "rain" of ultrafine magnetic grains, carried into the upper atmosphere from volcanic

eruptions and other unspecified processes. Kukla et al. further assumed that after these grains had

been incorporated into the loess sequence during deposition, they remained inert and unaltered by

post-depositional processes. The loess, on the other hand, was assumed to be essentially non-

magnetic, and the modulation of the magnetic susceptibility signal was interpreted as a measure of

the extent to which the magnetic "rain" had been diluted by loess. Thus, during glacial times,

when the climate was cold and dry, the barren outwash plains could be easily eroded by aeolian

processes, the rate of loess deposition would be at a maximum, and the magnetic susceptibility

signal would be at a minimum. During interglacial times, when the climate was warm and humid,

vegetation and soil moisture would tend to stabilize the outwash plains, loess deposition would be

a minimum, and the magnetic susceptibility would be a maximum.
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Themodelof Kukla et al. (1988; 1990) differs from that of Heller and Liu (1984) who

suggested that the magnetic susceptibility values in the paleosols reflected a concentrating of the

magnetic minerals by decalcification and soil compaction. Both models discounted any post-

depositional alteration of the magnetic carriers. This fundamental assumption has been questioned

by Zhou et al. (1990), Maher and Thompson (1991), and Zheng et al. (1991) who showed that

there were significant differences between the rock magnetic properties of the magnetic minerals in

the loess units and those in the paleosol units. These differences implied that there were

differences in both the magnetic mineralogy and the grain size of the magnetic minerals in the two

units. Maher and Thompson (1991) also raised questions about the methods that Kukla et al. used

to demonstrate that the rate of accumulation of magnetic minerals had been constant. Zhou et al.,

Zheng et al., and Maher and Thompson all concluded that pedogenic processes had probably been

important in the development of the magnetic susceptibility record of the paleosols.

We have obtained direct evidence that the magnetic susceptibility signal of both the loess units

and the paleosols is due primarily to magnetic minerals formed by pedogenic processes. This

conclusion is based on the studies of samples from ten loess/paleosol pairs from the classic section

in Luochuan. The samples were provided to us by George Kukla of the Lamont-Doherty

Geological Observatory, and they encompass the entire loess/paleosol sequence. Their

designations, stratigraphic positions and approximate ages are shown in Table 1.

For each sample, we measured a variety of rock magnetic properties both before and after

extraction with citrate-bicarbonate-dithionite (CBD). In this procedure, samples are subjected to

sodium dithionite and bicarbonate, a strong buffered reductant, in the presence of sodium citrate, a

chelating agent (Singer and Janitzky, 1986). The procedure was developed by Mehra and Jackson

(1960) as a means of removing iron oxides from clay samples being prepared for X-ray diffraction

analysis. The procedure was subsequently adopted by soil scientists as part of the standard

chemical technique for characterizing the iron components of a soil. With that technique, extraction

procedures involving pyrophosphate, oxalate and CBD are used to determine the amount of iron in

organic, amorphous and crystalline phases, respectively. In recent years, we have used the CBD

extraction technique in our studies of magnetic susceptibility enhancement in soil chronosequences

in California (Singer and Fine, 1989; Fine et al., 1989; Singer et aI., 1992). That work has shown

that that CBD extraction is particularly effective in removing pedogenic magnetic grains (primarily

maghemite) and that it leaves untouched essentially all of the magnetic grains that were inherited

from the soil parent material (primarily magnetite and hematite). This selectivity has recently been

confirmed by Mossbauer spectrometry (Singer et al., 1991).

For untreated samples from the loess plateau, our rock magnetic measurements are fully

consistent with those reported by Maher and Thompson (1991) and by Zhou et al. (1990). For

example, the magnetic susceptibilities of the paleosols are as much as twenty times larger than
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thoseof thecorrespondingloesssamples(Table1). Differencesbetweenloessandpaleosol

samplepairsarealsonotedin thefrequencydependenceof themagneticsusceptibility(whichis a
measureof theconcentrationof ultrafinegrained,superparamagneticparticles),in theS-ratio

(whichis aparameterrelatedto hematiteconcentration),in theratioof saturationisothermal

remanentmagnetizationto anhystereticremanentmagnetization(whichis ameasureof therelative
abundanceof singledomaingrains)andin theratioof magneticsusceptibilityto anhysteretic

remanentsusceptibility(whichisrelatedto meanmagneticgrainsize).

AfterCBD treatment,boththeloessandthepaleosolsamplesloseasignificantpercentageof

theirmagneticsusceptibility(Table1). Theselossesaverage65%for theloesssamplesand90%

for thepaleosolsamples.Becausethemagneticsusceptibilitiesof theuntreatedpaleosolsamples

arefive to tentimesgreaterthanthatof theuntreatedloesssamples,theabsolutedecreasesin

magneticsusceptibilityaremuchgreaterin thepaleosolsthanin theloessunits(Figure1).

Furthermore,afterCBDtreatment,themagneticsusceptibilitiesof theloesssamplesandthe

paleosolsamplesareaboutthesame,regardlessof theageof thesamples(Figure1). Severalother
rockmagneticpropertiesalsoshowdecreasesafterCBDtreatmentwith largestchangesagain

occurringin samplesfrom thepaleosols(Figure2). For afew rock magneticproperties,thevalues
fromthepaleosolandloesssamplesmoveinoppositedirectionsafterCBD treatment.

Furthermore,wehavefoundacloserelationshipbetweenmagneticsusceptibilityanddithionite-

extractableiron (Figure3), providingadditionalevidenceof theimportanceof pedogenesisin

determiningthemagneticsusceptibilityof paleosolsandloess.

Basedonourwork on thesoil chronosequencesin California,we interprettheCBD soluble

fractionin the loessandpaleosolsamplesasthepedogenicfraction,andtheCBD insolublefraction

astheinheritedfraction. This indicatesthatasignificantportionof themagneticsusceptibility

signalof boththeloesssamplesandthepaleosolsamplesispedogenicin origin. Thefact that
pedogenesisis importantin producingthemagneticsusceptibilitysignalin thepaleosolswas

suggestedby Zhouet al. (1990), Maher and Thompson (1991) and Zheng et al. (1991).

However, none of these groups postulated that pedogenesis could account for almost all of the

magnetic susceptibility signal in the paleosols, and none of them proposed that pedogenesis would

be important in the loess units as well. This latter observation gives us an entirely new perspective

on the paleosol/loess sequences. In the conventional view, paleosol units are considered to have

resulted from very different processes than those that produce the loess units. From our results, it

seems that the same pedogenic processes might have been operating during times of loess

deposition and paleosol formation but these processes were more intense during the former than

during the latter.

Our results also show that other earlier inferences about the nature of the magnetic

susceptibility signal were probably also wrong. For example, Maher and Thompson suggested
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thatthepedogeniccomponentof themagneticsusceptibilitywasprobablycarriedbymagnetite
whileourdatastronglysupporttheconclusionthatmaghemiteis theprimarymagneticmineral.

More importantly,ourobservationsprovidenosupportfor theconceptof aninert,ultrafine

magnetic"rain" dilutedto varyingdegreesby non-magneticwindblownsilt, asproposedby Kukla

et al. (1988; 1990). In fact, if the nearly constant residual magnetic susceptibility that we observe

in both the paleosol and loess samples after CBD treatment is an exogenous magnetic component,

it implies that the loess was accumulating at a same rate during glacial and interglacial stages and

that the differences between paleosols and loess are due entirely to the degree of pedogenesis.

At present time, we are not prepared to argue the merits of this or any other explanation of our

results. What we will argue is that we have shown that there is a clear need for a better

understanding of the nature and origin of the magnetic susceptibility signal in the Chinese

loess/paleosol sequence. This need is more than just a minor problem, of interest to a small group

of rock magnetists. As noted above, the loess/paleosol sequences in general, and the Chinese

sequences in particular, are considered the best recorders of terrestrial climate change during the

last 2.4 million years. Almost exclusively, this change is being studied using magnetic

susceptibility as a proxy indicator of paleoclimate. In fact, using assumptions about the magnetic

susceptibility signal that our research has now shown to be incorrect, other workers have already

developed an elaborate model for climate changes in Asia and the western Pacific. The model

attributes these changes to astronomically-driven fluctuations in the summer monsoon that are

modulated by uplift of the Tibetan plateau (Kukla, 1987; An et al., 1991).

While certain aspects of this model may ultimately prove to be correct, the model itself cannot

be validated until its underlying assumptions are based on the proper paleoclimate interpretation of

the magnetic susceptibility record. Our work has shown that this interpretation must address the

pedogenic nature of the magnetic susceptibility signal. This requirement also applies to

loess/paleosol sequences elsewhere that are also being interpreted as records of terrestrial climate

change.
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Table 1. Paleosol and Loess Samples from Luochuan, China.

(Samples provided by George Kukla.)

Position
Magnetic susceptibility

A_.g_e_+ Pre-CBD Post-CBD

m ka SI x 10 -8 m3 kg-I

S 1 10.0 128

L2-LLI 12,5 174

$3 24.0 328

L4 26.0 357

$5 36.5 614

I_6 42,0 652

$7 52,0 726

I_8 52.5

$8 54,5 737

L9 57,5 834

LI4 76.0 9

LI5 78.5 1172

WSIWLI 86,0 1316

WSISS1 86.5 '_

WSISS1 87.5 9

WS2SS2 99.0 1566

WL2LL2 l 01,0 1695

WS3LLI 107.5 1939

WS3LL1 109.0 1939

WL4LL3 134.0 2342

RsSS1 136.0 >2342

227.5

11.4

223.3

57.2

283.3

59.7

81.1

58.5

129.5

26.9

53.7

23 0

1329

862

846

102 5

549

45 0

49 9

371

168 7

22.7

8.1

19.7

186

114

137

153

150

150

153

112

14.4

13.9

14.3
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9.4
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+ Age from Kukla (1987) Table 5.
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Figure 1. Effect of CBD treatment on magnetic susceptibility of some paleosol and loess units
from the Lishi Formation, Luochuan, China. Squares are paleosol units; circles are loess units.

Arrows indicate change upon CBD treatment. The post-CBD values for both paleosols and loess
units are about the same.
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Ice Ages and Geomagnetic
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1. Climatic Cooling related to Geomagnetic Reversals?

There have been speculations on the relationship between climatic cooling and

polarity reversals of the earth's magnetic field during the Pleistocene (Kawai et al. 1975,

Rampino 1981, Krishnamurthy et al 1986, and Jacobs 1984 for a review). Two of the

common criticisms on this relationship have been the reality of these short duration

geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed

recent progress in this area. They identified a total of 10 short-duration polarity events in

the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-

Ar dates. The nomenclature and the estimated ages for these events are shown on the top

of Fig. 1a. Events with age dated from volcanic rocks are shown as solid bars, those from

sedimentary rocks as stippled bars. Also, typeface and size of the names represent the

degree of confidence in the exact age or existence of that polarity event. Following

Rampino (1981), the eccentricity of the earth's orbit over the past 1.2 Ma is also calculated

(Berger 1977) and plotted with the stacked oxygen isotope data (with the SPECMAP time

scale, Imrie et al 1984) at the bottom of Fig.la.

An inspection of Fig. la shows that during the last 600 ka, where the 100 ka cycle

(due to eccentricity) was the dominant signal in the oxygen isotope data, magnetic polarity

events seem to occur near times of maximum eccentricity and rapid glaciation, thus giving

some support to a possible climate-magnetic reversal connection. For t > 600 ka, the

correlation is not as good - although there is an apparent correlation between times of

maximum eccenmcity and the Kamikatsura event, the end of the Jaramillo and the Cobb

Mountain event, ff the ages of these older events are revised according to Shackleton et al.

(1990), then all of these older events, except the Kamikatsura, appear to occur near

eccentricity maxima (Fig. lb).

Anyhow, Champion et al. (1988) found that the mean of the polarity interval

lengths (in Fig.la) to be close to the 100 ka main orbital eccentricity period of the earth,

they therefore suggested that linkage between geomagnetic, paleoclimatic and possible

underlying earth orbital parameters should be further studied.
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2, Mechanisms that relate climatic cooling & Geomagnetic Reversals

Supposing that the speculated relationship between climatic cooling and geomagnetic

reversals actually exist, two mechanisms that assume climatic cooling causes short period

magnetic reversals will be investigated. It should be noted that this is NOT an attempt to

explain the occurrence of ALL the magnetic polarity events in terms of glacial advances, for

it is obvious that magnetic reversals has occurred throughout the history of the earth - even

during times when there is no glaciation. Therefore, the mechanisms that we investigate

operates only within the Pleistocene and it should be clear that other mechanisms, with

different time scales, may be operative at the same time and they may be responsible for the

reversals outside this epoch.

2.a Core-Mantle Boundary Topography

A possible mechanism results from the variation of topographic interaction across the

core-mantle boundary (CMB). For example, the formation of large bumps or depressions

at the CMB will set up Taylor columns in the core (Hide, 1969), disrupt the flow which

drives the geodynamo and possibly change the geomagnetic field. The critical height for

topographic coupling to be effective has been estimated to be around 1 km.

Gubbins and Richards (1986) have investigated the effect of thermal and subduction-

induced topography and have concluded that both have the right magnitude to cause

coupling. However, the thermal time scale is of the order of 100 Ma whereas changes in

topography due to subduction is about 10 Ma. Since polarity reversals can occur several

times in 1 Ma, there must be other phenomena which cause the short time scale variations

in topographic coupling during the Pleistocene. Now, the period of a glacial cycle is about

100 ka and for a 3 km thick ice sheet, the depression at the earth's surface is about 1 km.

Thus, depending on how rapid this deformation attenuates with depth, glacial induced

topography at the CMB, if suitably located, may be able to enhance (or diminish) the

coupling due to thermal and subduction-induced topography such that the total coupling can

exceed (or fall below) the threshold value required to disrupt core flow.

The topography of the CMB due to glacial loads at the earth's surface has been

calculated for 3 different earth models L1, L2 & L3 which has lower mantle viscosities of

1021, 3x1021 and 1022 Pa-s respectively. The ice model consists of 3 centers of

glaciation corresponding to the Laurentide, FennoScandian and Antarctic ice masses which

has total mass equivalent to a sea level drop of 100 meters and whose glacial history

consists of 30 cycles of glaciation, the last of which is plotted in Fig.2a. The result of this

calculation is described in Wu (1990) which shows that the maximum topography occurs

underneath the Laurentide ice center and the time variation of this maxima is shown in
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Fig.2c.In view of itssmallnessin heightandits locationrelativeto othertopographichighs

asdeducedfrom seismictomography,glacialinducedCMB topographyis not expectedto

beableto significantlymodulatetotalcouplingandmodifycoreflow today.
2.b Transfer of Rotational Energy to the core

An alternate mechanism is the transfer of rotational energy into the fluid core: the

redistribution of water masses during glaciation and deglaciation will cause the moment of

inertia of the earth to change - for example, when water is taken from the ocean basins and

is locked in the ice sheets near the pole, the moment of inertia will decrease. By the

conservation of angular momentum, the decrease in the moment of inertia must be

accompanied by an increase in the angular velocity of the mantle. If the increase in velocity

at the bottom of the mantle exceeds the 0.03 cm/sec flow velocity in the fluid core

(estimated from the westward drift of the non-dipole component), then the transfer of

angular momentum into the core would disrupt the convective heat engine inside and

possibly result in a change in magnetic polarity (Doake 1977, Muller & Morris 1986).

The change in velocity at the bottom of the mantle due to the simple

glaciation/deglaciation model described earlier is plotted in Fig.2b. The solid li_e, the

dotted line and the dashed line correspond to earth models L1, L2 and L3 respectively. The

stripped area in the middle indicates that the velocity at the bottom of the mantle is below

the preexisting flow velocity in the fluid core. From Fig.2b it can be seen that model L1

(and possibly L3 near glacial minimum) can produce velocity changes comparable to the

existing flow in the core.

Given that a 100m change in sea levels can produce velocity changes at the bottom of

the mantle to be comparable to the existing flow in the core, the next question concerns

how energy is transferred from the mantle to the core. The mantle and the core can interact

by electromagnetic coupling, viscous coupling and topographic coupling. If the roughness

of the CMB exceeds the thickness of the viscous hydromagnetic boundary layer, then

topographic coupling becomes the dominant mechanism. Although the topography induced

by glacial loads has been shown to be too small to cause coupling, the topography due to

density loads in the mantle exceeds the critical value and possibly provides the coupling

mechanism to wansfer rotational energy into the core to cause geomagnetic reversals.

3, Conclusion

In conclusion, the variation in CMB topography induced by the surface glacial loads

has the correct time scale but not the amplitude, unless the maxima are suitably located, to

significantly modify the total coupling mechanism and disrupt the flow pattern in the core

resulting in geomag-netic field reversals. The transfer of rotational energy from the mantle to
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thecorevia topographiccouplingis amorelikely candidate,providedthatthechangein sea

level is of theorderof 100metersandthecoupling is via thermalandsubductioninduced

topography.

4. Ouestions and Future Work

More precise dates and the establishment of the reality of some polarity events (eg.

the Emperor & Delta events) are required to establish/disprove the controversial relationship

between climatic cooling and geomagnetic reversals. In the compilation of Champion et al

(1988), some of the events have rather large uncertainties in their age, and, as shown in

Fig.l, the correlation of some of the older events with eccentricity maxima depends

critically on their age.

Opponents to a climate-magnetic reversal relationship often question whether polarity

events observed in different parts of the world but with approximately the same age can be

correlated and whether they correspond to the same global events. Another question is

whether there are only 8 polarity events in the Brunhes, for, ff more events are discovered,

then there may be no correlation between polarity events and eccentricity maxima. Clearly,

cores in different parts of the earth, with more complete record and dates are needed to

answer these questions.

Even when the relationship between climate and magnetic reversals is established, the

next question is which is the cause and which is the effect? If magnetic field is the cause,

then the question is why they do not always cause climatic cooling (eg. during the

Cretaceous)? If climatic cooling is the cause, then, are there other mechanisms?

A better seismic tomographic map of the CMB would confirm whether glacial

induced topography can modulate total coupling and modify core flow. Glacial induced

topography is rejected because, in seismic tomographic maps of the CMB (Morelli &

Dziewonski 1987, Creager & Jordan 1986), no topographic hills/troughs seem to exist

underneath Laurentia. These seismic tomographic maps are, however, not consistent with

each other and therefore have some degrees of uncertainty in them.

More work is needed to understand the details of the core-mantle coupling

mechanisms and how energy and angular momentum can be transferred from the mantle to

the core.

Finally, even after this is achieved, questions still remain as to how this energy and

momentum are going to disturb the flow field and the convective engine of the core? how a

polarity reversal comes about ? and why the reversals are often so brief?.
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Late Quaternary Time Series of Arabian Sea Productivity:

Global and Regional Signals

S.C. Clemens W.L. Prell D.W. Murray

Brown University

Providence, RI

Modern annual floral and faunal production in the northwest Arabian Sea derives primarily from

upwelling induced by strong southwest monsoon winds during June, July, and August. Indian Ocean

summer monsoon winds are, in turn, driven by differential heating between the Asian continent

and the Indian Ocean to the south. This differential heating produces a strong pressure gradient

resulting in southwest monsoon winds and both coastal and divergent upwelling off the Arabian

Peninsula (Figure 1). Over geologic time scales (104 to 106 years), monsoon wind strength is sensitive

to changes in boundary conditions which influence this pressure gradient. Important boundary

conditions include the seasonal distribution of solar radiation, global ice volume, Indian Ocean sea

surface temperature, and the elevation and albedo of the Asian continent. To the extent that these

factors influence monsoon wind strength, they also influence upwelling and productivity. In addition,

however, productivity associated with upwelling can be decoupled from the strength of the summer

monsoon winds via oceanic mechanisms which serve to inhibit or enhance the nutrient supply in the

intermediate waters of the Indian Ocean, the source for upwelled waters in the Arabian Sea (Prell,

1990).

To differentiate productivity associated with wind-induced upwelling from that associated with

other components of the system such as nutrient sequestering in glacial-age deep waters (i.e. Boyle,

1988) we employ a strategy which monitors independent components (Figure 2) of the oceanic and

atmospheric subsystems. Using sediment records from the Owen Ridge, northwest Arabian Sea, we

monitor the strength of upwelling and productivity using two independent indicators, % G. bulloides
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(Prell, 1984, 1990) and opal accumulation (Murray', 1990). We monitor the strength of southwest

monsoon winds by measuring the grain-size of lithogenic dust particles blown into the Arabian Sea

from the surrounding deserts of the Somali and Arabian Peninsulas (Clemens and Prell, 1990a).

The planktonic foramiuifer G. bulloides is typically a subpolar species found in the Southern ocean

between the Subtropical Convergence and the Antarctic Convergence. However, G.bulloides is also

found in high abundance in tropical upwelling areas such as the northern Arabian Sea of the coast of

Arabia (IIutson and Prel], 1980; Cullen and Prell, 1984) and Cariaco Trench, located off Venezuela

(Overpeck et al., 1989). G. bulloides abundance in the Arabian Sea is negatively correlated to

summer sea surface temperature (Prell and Curry, 1981) which, in turn, is negatively correlated

with wind-induced upwelling during the summer monsoon (Prell and Streeter, 1982). Similarly, opal

accumulation is positively correlated with nutrient distribution associated with upwelling but less

influenced by regional sea surface temperatures (Murray, in preparation).

The Owen Ridge lies beneath the axis of the strong summer monsoon winds. These winds can

transport lit.hogel6c dust particles such as those found on the Owen Ridge (mean diameter of 14.4

pro) for thousands of kilometers given mean velocities of 15 m/s and values for the coefficient of

turbulent exchange found in typical cyclonic storms and frontal systems (Tsoar and Pye, 1987).

The largest particles (40 to 50 /tin) can also be transported up to - 1000 km in more extreme dust.

storm events. These estimates of transport distances are consistent with studies which identify the

Somali and Arabian Peninsulas as primary source areas for dust found in Arabian Sea sediments

(Middleton, 1986: Sirocko and Samthein, 1989). Over geologic time scales, increases in the strength

of monsoon winds result in the transport of larger lithogenic particles to the Arabian Sea, thus

increasing the median grain size of the lithogenic component (Clemens and Prell, 1990a).

Spectral analyses of these records allow us to examine concentrations of variance held in common

between these independent abiotic and biotic records of wind strength and productivity. Our results

unambiguously demonstrate that all three independent records are linearly related and in phase

with one another over the Earth's orbital precession cycles (23 kyr cycles; Figure 3). We interpret

these relationships as indicating that.: (1) to first order, all three indicators are linked by a common

response to monsoon wind strength and upwelling, and (2) precessional insolation is the primary

external forcing mechanism for the late Quaternary monsoon and the associated upwelling induced

productivity. However, variance associated with precession accounts for only _ 25% of the total

variance in any given record. A large portion of the total variance in the biotic records is concentrated

at. the 41 kyr period associated with the obliquity of the Earth's orbit (Figure 4; Prell, 1990). The
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grain-size record, on the other hand, contains large amounts of variance at the 29, 35, and 54-kyr

periods which represent heterodyne periods of tile primary orbital periods (100, 41, and 23 kyr

periods; Clemens and Prell, 1990b). It is the dissimilarities between these records that contains

the information possibly allowing differentiation of productivity associated with monsoon-induced

upwelling from that associated with other mechanisms.

Our current hypothesis is that the variability associated with the 41 kyr power in the G. bulloides

and opal accumulation records derive from nutrient availability in the intermediate waters which

are upwelled via monsoon winds. This hypothesis is testable by comparison with Cd records of

intermediate and deep waters of the Atlantic and Indian Ocean (e.g. Boyle, 1988).

The 35 and 54 kyr heterodyne periods in the grain-size record are positively correlated with

large amplitude insolation event.s at 30°south in the Indian Ocean, the latitude of the subtropical

high pressure cells from which the Indian Ocean monsoon winds initiate. The 29 kyr variability

is linearly related to sea surface temperature records from the southern subtropical Indian Ocean.

Both associations can be explained via the relationship between latent heat (a function of ocean-

atmosphere temperature gradients) and monsoon strength as follows (Clemens and Prell, 1990b).

Latent. heat collected overt the southern subtropic Indian Ocean is transported across the equator

and released in the mid-troposphere about the Tibetan Plateau. This increases the strength of

the monsoon low, resulting in increased wind strength and t.ransport of larger lithic particles to

the Arabian Sea. This hypothesis is currently being tested by' development of late Quaternary sea

surface temperature records from _ 300 south. Concentrations of variance at the 35, and 54 kyr

periods in these records would support the latent heat link between the insolation record and the

grain size record of monsoon strength.

Confirmation of the hypotheses described above will eventually enable us to quantitatively par-

tition variance within these records into that attributed to monsoon-indnced npwelling (regional)

and oceanic mechanisms of nutrient distribution (global). Identification of a global signal in regional

upwelling productivity would then provide a framework for comparison of productivity records from

upwelling regions throughout the world ocean.
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Figure 1. The lithogenic and biogenJc components of Owen Ridge sediments record late
Quaternary climatic changes associated with the Indian Ocean monsoon system. Strong southwest

winds (arrows) flow from high pressure to low pressure inducing coastal and divergent upweUing
(shaded) off the Arabian Peninsula. UpweUing productivity is recorded in the geological record of
fossil planktonic foraminifera (carbonate) and radiolaria (opal) preserved in Owen Ridge
sediments. Both southwest and northwest summer winds transport terrigenous dust to the.Owen
Ridge from deserts of Somali and Arabia. The grain size of the lithogenic component varies as a
function of the strength of the transporting winds.
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Figure 2. Lithogenic and biogenic indicators of monsoon wind strength and upweUing-induced
productivity. Increased % G. bulloides and opal accumulation record changes in productivity
associated with nutrient content of the intermediate waters upwelled during the summer monsoon.
Increased grain size of the lithogenic component varies as a function of the strength of summer
winds.
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Figure 3. Precessional phase wheel summarizing the coherency and phase relationships between
several monsoon indices and the Earth's orbital precession. All parameters shown are coherent (at
or above the 80% confidence level) with insolation patterns driven by the precession of the Earth's

orbit. The phasing indicates that all the monsoon records attain maxima -9 kyrs after maxima in
precessional insolation but simultaneously with minima in sea surface temperatures (SST) at 13 °
south in the Indian Ocean. This, similar to modern monsoon dynamics, indicates that latent heat

availability in the southern subtropic Indian Ocean exerts a strong influence on the timing of strong
monsoons and upwelling in the Arabian Sea over the past 400 kyrs.
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Figure 4. Spectra of the biogenic and abiogenic indicators of monsoon wind strength and the
associated upwcUing-induced productivity. The 41 kyr (orbital obliquity) variance in the G.
bulloides and opal records is absent from the lithogenic (abiotic) record indicating that variance in

this frequency band may not be driven by productivity due to monsoon-induced upwelling. This
variance may be associated with more global oceanic mechanisms which enhance or reduce the

nutrient content of the intermediate waters of the Indian Ocean. The 29, 35, and 54 kyr spectral

peaks in the grain size record are linearly related to SST and insolation patterns in the southern

subtropic Indian Ocean indicating a link between latent heat flux and monsoon strength as is

observed in modern monsoon dynamics.
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Annual, Orbital, and Enigmatic Variations in Tropical

Oceanography Recorded by the Equatorial Atlantic Amplifier

Andrew Mclntyre

Lamont-Doherty Geological Observatory

Palisades, NY 10964

and

Department of Geology

Queens College of CUNY

Flushing, NY 113,57

Equatorial Atlantic surface waters respond directly to cahnges in zonal and meridional lower

tropospheric winds forced by annual insolation. This mechanism has its maximum effect along the

equatorial wave guide centered on IO°W. The result is to amplify even subtle tropical climate changes

such that they are recorded by marked amplitude changes in the proxy signals. Model realizations,

NCAR AGCM and OGCM for 0 Ka and 126 Ka (January and July), and paleoceanographic proxy

data show that these winds are also forced by insolation changes at the orbital periods of Precession

and Obliquity.

Perhelion in boreal summer produces a strengthened monsoon, e.g. increased meridional and

decrease zonal wind stress. This reduces oceanic Ekman divergence and thermocline/nutricline

shallowing. The result, in the equatorial Atlantic, is reduced primary productivity and higher

euphotic zone temperatures; vice versa for perihelion in boreal winter. Perihelion is controlled by

precession. Thus, the dominant period in spectra from a stacked SST record (0-252 Ka BP) at

the site of the equatorial Atlantic amplifier is 23 Ky (53% of the total variance). This precessional

period is coherent (k=0.920) and in phase with boreal summer insolation.

Oscillations of shorter period are present in records from cores sited beneath the amplifier re-

gion. These occur between 12.5 and 74.5 Ka BP, when eccentricity modulation of precession is

at a minimum. Within this time interval there are 21 cycles with mean periods of (3.0+0.5)Ky.

Similar periods have been documented from high latitude regions, e.g. Greenland ice cores from

Camp Century. The Camp Century signal in this same time interval contains 21 cycles. A subjec-

tive correlation was made between the Camp Century and the equatorial records; the signals were

statistically similar, (r=0.722) and (k=0.960).
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Modeling Orbital Changes on Tectonic Time Scales

Thomas J. Crowley

ARC Technologies

305 Arguello Drive

College Station, TX 77840

Geologic time series indicate significant 100 ka and 400 ka pre-Pleistocene climate fluctuations,

prior to the time of such fluctuations in Pleistocene ice sheets. The origin of these fluctuations

must therefore depend on phenomena other than the ice sheets. In a previous set of experiments

(Short et al., Quat. Res. 35, 15%173, 1991) we tested the sensitivity of an energy balance model to

orbital insolation forcing, specifically focusing on the filtering effect of the Earth's geography. We

found that in equatorial areas, the twice-yearly passage of the sun across the equator interacts with

the precession index to generate 100 ka and 400 ka power in our modeled time series. The effect is

proportional to the magnitude of land in equatorial regions. We suggest that such changes may reflect

monsoonal variations in the real climate system, and that subsequent wind and weathering changes

may transfer some of this signal t.o the marine record. A comparison with observed fluctuations of

Triassic lake levels is quite favorable.

A number of problems remain to be studied or clarified:

• the EBM experiments need to be followed up by a limited number of GCM experiments;

• the sensitivity to secular changes ill orbital forcing needs to be examined;

• the possible modifying role of sedimentary processes on geologic time series warrants consid-

erably more study;

• the effect of tectonic changes on Earth's rotation rate needs to be studied;

• astronomers need to make explicit which of their predictions are robust and geologists and

astronomers have to agree on which of the predictions are most testable in the geologic record.
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Plio-Pleistocene time evolution of the

lO0-ky cycle in marine paleoclimate records

Jeffrey Park and Kirk A. Maasch*

Department of Geology and Geophysics

Box 6666, Yale University

New Haven, CT 06511

To constrain theories for the dynamical e.volution of global ice mass through the

late Neogene, it is important to determine whether major changes in the record were

gradual or rapid. Of particular interest is the evolution of the near 100-ky ice age

cycle in the middle Pleistocene. We have applied a new technique based on multiple

taper spectrum analysis which allows us to model the time evolution of quasi-periodic

signals [Park and Maasch, 1992]. This technique uses both phase and a mt)litude

information, and enables us to address the question of abrupt versus gradual onset

of the 100-ky periodicity in the middle Pleistocene.

The variation of climate proxy variables at a given frequency fo (with associated

period To = 1/fo) (:an be parameterized by _{A(t)(-2'_'f°t}, a sinusoid with a slowly'-

varying amplitude A(t). The function A(t) is complex-vah, ed, allowing slow variations

in phase as well as magnitude. We define A(t) as the 'envelope' of the signal at 'carrier

frequency' fo. If A(t) = Ao is a constant, the signal is termed 'periodic' or 'a phase,-

coherent sinusoid.' If A(t) varies, the signal is termed 'quasi-periodic.' All methods

of determining the envelope of a quasi-periodic signal have shortcomings. Bandpass

filters, such as those used by Ruddim,m et al [1989], cannot model discontinuities in

the envelope of a quasi-periodic signal, and thus, are of little help in discriminating

between a sudden and a gradual onset for the 100-ky ice age cycle. Moreov_'r, a

narrow bandpass in the frequency domain requir(_s a. long time-domain filter, so that

a significant number of data points at the ends of the series mnst be discarded.

Similarly, the choice of length for the overlapping data segments in tlw Ruddiman et

al [1986b] analysis involves a tradeoff between frequency and time resolution.

We apply instead a more flexible approach based on nmltiple-taper spectrum

analysis [Thomson 1982; 1990; Park et al. 1987, Berger et al 1991]. The ,nultitaper

*Current Address: Institute for Quaternary Studies, 320 iloardman tlall, University of Marne,
Orono, ME 04468
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approachallows the'.analyst to model the envelopefunction A(t) using the tools of lin-

ear inverse theory, solving for the envelope function that fits the time series data while

optimizing some property of the envelope. Inversion algorithms can be derived that

find the 'smallest' and 'smoothest' envelopes that fit spectral 'data' from a given time

series [Park 1990; Park 1992]. Special cases of these the algorithms can be deriw_d

to model sudden changes in the envelope. This allows us to examine the abruptness

of the onset of the 100-ky periodicity as well as the evolution of the obliquity and

precession signals. The estimation procedure relates spectral estimates at fo, using a

set of orthogonal Slepian data tapers, as linear functionals of an unknown envelope

A(t), so that the envelope is constructed from a linear combination of the Slepian

tapers. Since the Slepian tapers are optimally bandlimited, multitaper envelope es-

timation can be thought of as an extremely sharp narrow-band filter valid for the

entire duration of the series.

The shortcomings of the algorithm we use are similar to those of other linear

inverse problems. For instance, the multitaper envelope estimation procedure can

model envelope discontinuities, but tile technique cannot by itself discriminate be-

tween continuous and discontinuous models for the 100-ky cycle, since envelopes of

both types can be constructed that fit the spectral 'data' exactly. The analyst must

use other, perhaps subjective, criteria for choosing among models that fit the data.

This nonuniqueness is a common problem in linear inverse theory; in principle an

infinite number of envelopes can fit a finite number of spectral data exactly. In

most. case.s, the a priori constraint that the signal at a carrier frequency fo have a

'slowly-varying' envelope, except at one or more specified time points, reduces greatly

the number of acceptable models for the envelope, and motivates the solution of a

'smoothest' envelope that fits the spectra[ data.

W'e investigated the time-evolution of the 100-ky cycle in (SlSO data, thought to

reflect global ice-volume variations. We analyzed _51sO data from DSDP Site 607

and ODP Site 677, from which three long (> 2.6 My) time series have been published

[Shackleton and Hall, 1989; Ruddiman et al 1986ab; 1989; Raymo et al 1989]. We find

evidence for a coherent _gso signal for both cores in the eccentricity and obliquity

frequency bands, consistent with variations in global ice volume as the causative

factor. However, the nature of the earth system response to orbital insolation cycles

depends on the time scale adopted in the spectral analysis. If the Ruddiman/Raymo

time scale for DSDP Site 607 is accepted, the _gso obliquity cycle has enhanced

amplitude between 1.0 and 1.5 Ma, relative to the late Pleistocene (t < 1.0 Ma), and

a nonlinear response of the earth system to orbital obliquity is inferred (Figure 1).

If the Shackleton et al [1990] time scale for ODP Site 677 is accepted, the amplitude

match between the alSO obliquity cycle and the 65°N insolation derived by Berger
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and Loutre [1991]from the recentastronomicalsolutionof Laskar[1988;1990]is very
good for times t<2.3 Ma (Figure 2). (Tile phase match for obliquity is enhanced by

the fact that the data series were tuned to the astronomical time series, so that the

observed phase agreement is not surprising.) The veracity of the ODP 677 time scale

therefore correlates with a linear earth-system response to orbital obliquity.

Based on our analysis of data from these two deep-sea cores, we do not find

compelling evidence for an abrupt change in the 100-ky _lSO signal. Rather, envelope

inversions in the eccentricity band suggest that tile 100-ky _180 cycle is phase-locked

with the 124-ky eccentricity cycle some 300-400 ky prior to its late-Pleistocene growth

in amplitude and phase-lock with the 95-ky eccentricity cycle (Figure 3). An abrupt

change in the 95-ky envelope near 0.85 Ma is consistent with DSDP 607 data on the

Ruddiman/Raymo time scale, but such a transition would occur while leaving the

124-ky envelope largely unchanged. If the Shackleton et al [1990] time scale for ODP

677 is accepted, our three _180 records are consistent with a low-amplitude 100-ky

cycle between 1.2 and 2.6 Ma, whose local period of oscillation alternates between the

two major eccentricity periods at 95 and 124 ky. The phase of these 100-ky oscillations

prior to 1.2 Ma is related to the phasic of the astronomical eccentricity cycles where

the cycles have significant amplitude. The match between the precessional envelopes

of Sites 607 and 677 is poor, when both are expressed in terms of the Shackleton et al

[1990] time scale. Climate simulation studies suggest that cyclic salinity changes in

equatorial surface waters are a plausible contributor to the ODP 677 61so data in the

precessional band, and could explain this discrepancy, ltowever, our time-rescaling of

data from DSDP 607, using visual isotope-stage matching, may not be precise enough

to transform the short-period precession cycles with sufficient accuracy.

Further study of more paleoclimate records will be necessary in order to address

more fully the time-evolution of the 100 kyr cycle. For instance, the correlation of

6180 signals from Sites 677 and 607 is intriguing, but comprehensive tests for the

global coherence of _180 signals should use data from more than two sites. The

phase information contained in the paleoclimate records may reaffirm the notion that

external earth-orbital forcing could be the pacemaker of the ice age cycles. How-

ever, the mid-Pleistocene amplitude increase of the quasi-periodic 100-ky 6180 signal

awaits a complete explanation, which appears to depend on factors other than orbital

insolation changes.

Future Tasks:

1) Collection of climate proxy data series, with good time control, from both

deep-sea, lake-bed, and land-based sedimentary sequences. Much data probably lies

dormant in the older cores stored by the Ocean Drilling Program, but only the older
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coresoften suffer fl'om coring gapsthat impededetailed time seriesanalysis. Newer
coredata aresplicedfrom parallel-paireddrill coresat a singlelocation.

2) careful cross-spectralanalysisof different data seriesto inw:stigate how the

earth climate system,asa whole, respondedto orbital insolation cyclesover the past
2-3 My, the period of Earth history most relevant to current global change problems.

The techniques developed for the abow" project can be extended to cross-series studies.

The buzzword for this kind of study is 'global teleconnections,' the manner in which

climate at different, parts of the globe interacts. The response of climate to modest

changes in its boundary conditions can (in principle) be tracked by its response over"

individual Milankovitch cycles.

3) similar analysis of data series from earlier periods of Earth history e.g. the

Cretaceous and the Eocene. Data is accumulating for a significant response to orbital

cycles, but a global synthesis has only been attempted so far with numerical climate

models. The Earth's climate was warmer in these two periods, but our understanding

of how the Earth sustained such temperature is, at, best, incomplete. Many studies

point towards higher carbon dioxide levels as a causative factor, and the ubiquitous

Milankovich-driven limestone/black-shale sequences suggest big changes in ocean cir'-

culation. Are the Cretaceous and Eocene global climates a picture of what awaits us

in a greenhouse future?

4) Despite a decade of global-warming predictions based on numerical climate

models, it must be admitted that these models (global circulation, energy balance,

etc) can represent the earth's climate dynamics only in a crude manner. The features

of the climate system that are critical to its longer-term variation (decades and cen-

turies) may not be apparent with the current generation of numerical climate models.

Improving the global circulation models is a high priority. This includes atmospheric,

ocean and coupled atmosphere-ocean models.

5) Collection of a long-term global climate database to 'validate' the output of

global circulation models. Such data are essential to check if tire numerical climaie

models are working. Comparisons of atmospheric GCM results with satellite data

have begun, but I am not aware of a global data-validation of oceanic GCMs.
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Figure Captions

Figure 1. Envelopeinversionsfor the time-evolution of the 41-ky signal in the
benthic also seriesfrom DSDP Site 607 and ODP Site 677,plotted against similar
analysestbr the astronomicalinsolation seriesderivedfrom Berger [1978]('65 ° old')
and Berger and Loutre [1991] ('65°N new'). Seven 4_-prolate Slepian eigentapers
are used to constrain the estimates, using 'smoothness' penalty function (10). The

amplitude units in this and succeeding plots are parts-per-thousand atso . Note the

phase correlation (with a constant shift) between the older astronomical series and
data from DSDP Site 607, and the correlation between the newer astronomical series
and data from ODP Site 677. This arises from the orbital tuning performed on the
data series. Orbital tuning does not enforce correlations between envelope amplitudes,
as is evident from the upper panel.

Figure 2. Similar to Figure 1, but with the envelope of the Berger [1978] se-

ries omitted and benthic alSO data fi'om I)SDP Site 607 expressed in terms of the
Shackleton et al [1990] time scale. Seven 4rr-prolate Slepian eigentapers are used to
constrain the estimates, using a 'smoothness' penalty function. Note the phase corre-
lation (with a constant shift) between the data series. Note the improved correlations
between envelope amplitudes in the upper panel.

Figure 3. Test for the abrupt onset of the 100-ky signal. Double-line envelope
inversion for the benthic alsO series from DSDP Site 607 on its published time scale,
at the two major eccentricity quasi-periods of 95 and 124 ky. Seven 41r-prolate Slepian
eigentapers are used to constrain the enw_lopes, which are constrained to be smooth
everywhere except at to =0.85 Ma.
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Figure 2
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Figure 3
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A First-Order Global Model of Late Cenozoic Climatic Change:

Orbital Forcing as a "Pacemaker" of the Ice Ages

Barry Saltzman

Department of Geology and Geophysics, Yale University

New Haven, CT 06511

The development of a theory of the evolution of the climate of the earth over millions

of years can be subdivided into three fundamental, nested, problems:

(I) to establish by equilibrium climate models (e.g., general circulation models) the

diagnostic relations, valid at any time, between the fast-response climate variables (i.e., the

"weather statistics") and both the prescribed external radiative forcing and the prescribed

distribution of the slow response variables (e.g., the ice sheets and shelves, the deep ocean state,

and the atmospheric CO2 concentration),

(II) to construct, by an essentially inductive process, a model of the time-dependent

evolution of the slow-response climatic variables over time scales longer than the damping times

of these variables but shorter than the time scale of tectonic changes in the boundary conditions

(e.g, altered geography and elevation of the continents, slow outgassing and weathering) and

ultra-slow astronomical changes such as in the solar radiative output, and

(III) to determine the nature of these ultra-slow processes and their effects on the

evolution of the equilibrium state of the climatic system about which the above time-dependent

variations occur.

In this discussion we touch upon all three problems in the context of the theory of the

Quaternary climate, which will be incomplete unless it is embedded in a more general theory

for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. We construct
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a simplemathematicalmodelfor theLateCenozoicclimaticchangesbasedon the hypothesis that

forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2),

coupled with changes in the deep ocean state and ice mass, under the additional "pacemaking"

influence of earth-orbital forcing, are primary determinants of the climatic state over this period.

Our goal is to illustrate how a single model governing both very long term variations and higher

frequency oscillatory variations in the Pleistocene can be formulated with relatively few

adjustable parameters. Although the details of these models are speculative, and other factors

neglected here are undoubtedly of importance,

formalism described can provide a basis for

systematically extending and improving it.

it is hoped that the "dynamical systems"

developing a comprehensive theory and

The equations for the variations of global ice mass (I), carbon dioxide (/z) and ocean

temperature (O), as presented by Saltzman and Maasch (1991) for our model system are:

d/

- oq - ot2 tanh(c#) - a31 - u2k00 - a_R[R(t) - R'] + W !
(4)

dl.t. fll- fl2lz+ fl31_2 - fl:3 _ f150+ F(t) + W (5)
dt

dO

d---'i" 7_ - 721 - %0 + Fo(O + W o (6)

where c, ko, and kR are constants determined from equilibrium climate model (e.g., GCM)

experiments relating summer surface temperature at high latitudes to atmospheric CO2 content,

to deep ocean temperature, and to the departure of incoming solar radiation at high latitudes,

R(t), from the present value R'. u3 and 73 are inverse time constants for the response of glacial
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ice and deepoceantemperatureassumedto be (10ky) t and (4 ky) -I, respectively, oq,/5_, and

3'1 are the rates at which global ice mass, CO 2, and mean ocean temperature would tend to

increase, respectively, if there were no CO2 in the atmosphere (_ = O), no ice on the planet (I

= O), no random forcing (W = O), mean ocean temperature was at O°C, and R at its present

value R'; these coefficients determine the equilibrium values of I, #, and O for any level of

forcing F and are to be evaluated from the observed late Pleistocene state as an initial condition

(in a hindcast sense). The remaining six coefficients %,/_2, /ss, /54, Bs, and 3"2 are considered

to be the adjustable parameters of our model that can be tuned to account for as much of the

observed variability and covariability of I, #, and O as possible.

In Fig 1 we depict in a highly simplified schematic form the interactions implied by our

model between the three slow-response variables, I, #, and O, and between these variables and

both the fast response climatic variables, e.g., surface temperature r, and external forcing due

to both insolation changes and tectonic variations. A heavy dashed arrow denotes an essentially

simultaneous, quasi-static (or equilibrated) response of the sign indicated, while a heavy solid

arrow denotes an inertial time lag in the response. Because cryospheric bedrock depression, D,

forms the basis of many other models we also include possible interactions of ice load with this

variable in this diagram. The influence of the slow-response variables on the sign and

magnitude of fast response climate can be estimated by GCM sensitivity studies and many useful

results have been obtained; the sign shown on the heavy dashed arrows refers to the influence

of the slow variables on one particular fast variable, surface temperature ¢. Although it is

difficult to calculate the relevant fluxes that determine the slow-response changes, we indicate

by the signs on the heavy arrows our assumption regarding the signs of the first order effects.
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In the lower part of thefigure wedepictby the thinnerlinestheBerner-Lasaga-Garrels(1983)-

type model for the equilibrated responseof atmosphericCO2to fundamentaltectonic and

weatheringprocesses.

By assumingplausibletime constantsfor the glacial ice massand global meanocean

temperature,and settingthevaluesof six adjustableparameters(rateconstants),a solution for

the last 5 My is obtaineddisplaying many of the featuresobservedover this time period

including the transitionto the near-100ky major iceageoscillationsof the latePleistocene(see

Fig 2). In obtainingthis solutionit is alsoassumedthatvariationsin tectonicforcing leadto a

reductionOf the equilibrium CO 2 concentration (perhaps due to increased weathering of rapidly

uplifted mountain ranges over this period). As a consequence of this CO2 reduction the model

dynamical system can become unstable, bifurcating to a free oscillatory ice-age regime that is

under the "pacemaker" influence of earth-orbital (Milankovitch) forcing.

We view this model as an illustration of the potential of a "dynamical systems" approach

to the formulation of a theory of long term climatic change occurring under the constraints of

prescribed radiative and tectonic forcing.
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tectonic variations (lower box). The effects of bedrock depression, not included in

this model, are represented by D.
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The Orbital Record in Stratigraphy
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Abstract

Orbital signals are being discovered in pre-Pleistocene sediments. Due

to their hierarchical nature these cycle patterns are complex, and the

imprecision of geochronology generally makes the assignment of strati-

graphic cycles to specific orbital cycles uncertain, but in sequences such

as the limnic Newark Group under study by Olsen and pelagic Cretaceous

sequence worked on by our Italo-American group the relative frequencies
yield a definitive match to the Milankovitch hierarchy.Due to the multi-

ple ways in which climate impinges on depositional systems, the orbital

signals are recorded in a multiplicity of parameters, and affect different

sedimentary facies in different ways. In platform carbonates, for exam-

ple, the chief effect is via sea-level variations (possibly tied to fluctuating

ice volume), resulting in cycles of emergence and submergence. In limnic

systems it finds its most dramatic expression in alternations of lake and

playa conditions. Biogenic pelagic oozes such as chalks and the lime-

stones derived from them display variations in the carbonate supplied by

planktonic organisms such as coccolithophores and foraminifera, and also

record variations in the aeration of bottom waters.Whereas early stud-

ies of stratigraphic cyclicity relied mainly on bedding variations visible

in the field, present studies are supplementing these with instrumental

scans of geochemical, paleontological and geophysical parameters which

yield quantitative curves amenable to time- series analysis; such analysis

is, however, limited by problems of distorted time-scales. My own work

has been largely concentrated on pelagic systems. In these, the sensitivity

of pelagic organisms to climatic-oceanic changes, combined with the sen-

sitivity of bottom life to changes in oxygen availability (commonly much

more restricted in the Past than now) has left cyclic patterns related to

orbital forcing. These systems are further attractive because (!) they

tend to offer depositional continuity, and (2) presence of abundant mi-

crofossils yields close ties to geochronology. A tantalizing possibility that

stratigraphy may yield a record of orbital signals unrelated to climate has

turned up in magnetic studies of our Cretaceous core. Magnetic secular
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variations here carry a strong 39 ka periodicity, corresponding to the the-
oretical obliquity period of that time - Does the obliquity cycle perhaps
have some direct influence on the magnetic field?

I consider the following lines of research to be particularly important:

• (1) Studies ofstratigraphic sequences in which Milankovitch cyclicity
is particularly apparent, and in which the record appears to be un-
broken and extends for time spans in the l0 s - 10z Ma range. This

includes such sequences as the Newark Series (Olsen), the pelagic
Cretaceous of ltaly which we have been studying, and the Eocene of

Angola (Fig. 5).

• (2) Extending such sludies to the tracking of magnetic secular vari-
ation, which may turn out to provide a record of orbital variations
independent of climate.

• (3) Exploring the geographic dimension, by global mapping of the
distribution of cycle styles for given time-slices. How do cycle pat-
terns change with latitude, from hemisphere to hemisphere, from
ocean to ocean? Only such studies will bring cyclostratigraphic
studies to bear on the problems of climatic change. ALBICORE
is a start in that direction.

• (4) Extending cyclostratigraphic research into the Paleozoic. Mi-
lankovitch patterns, in particular the 1;5;20 ratio of precession to
the eccentricity cycles, have now been established back to the Tri-
assic Period, but Paleozoic stratigraphic patterns do not seem to fit
this scheme. Were the orbital periods, or the Earth's response to
them, different in Paleozoic times?

1 Orbital Variations

Quasi-rhythmical orbital variations have affected the Earth since its inception.

The current patterns of such rhythms with periods of up to 400,000 years, are

well defined from astronomical observations. Not so clear is how the major or-

bital parameters and their minor variations have changed through time. The

length of the day, for example, is lengthening with transfer of angular momen-

tum to the moon, and the current rate of change has been well established, but

it seems highly unlikely that the change has been linear, and the existing data
on this from historical geology are unsatisfactory. Other orbital variations such

as the obliquity cycle and the precession are linked to the rotation rate, so that

they too have changed with time, in ways that remain undefined.Astronomers

are interested in the patterns of change for obvious reasons, but so are geologists
and climatologists. If the orbital variations of the past have left a record in the

rocks - specifically, in the sequentially accumulated layers of sedimentary and

volcanic rocks that form an incomplete envelope of the crust - they may provide

a geochronology (Gilbert, 1895) and a means for refining the crude time scale
provided by radiochemistry. But furthermore, the orbital variations influence

96



the latitudinal and seasonal distribution of insolation, and thereby atmospheric

climate and oceanic dynamics, and thus come to be agents in "Global Change."

While the major Icehouse and Greenhouse modes of the outer Earth have prob-

ably been driven by internal cycles (mantle convection - Wilson cycle of plate

tectonics: Fischer, 1984). The orbital variations have modulated oceanic an

climatic behavior within these major modes. Such modulations may be thought

of as experiments, and if they can be reconstructed from the historical record

they will bring light to the range of climatic-oceanic behavior that lies beyond

the realm of human experience.

2 The Quaternary Record

The case for such orbital forcing has now been compellingly made for the Pleis-

tocene. It was first suggested nearly 150 years ago by Adhemar, and the theory

was further developed and improved by Croll (for a summary, see Imbrie & Im-

brie, 1979), but its quantitative footing - that the orbital variations vary inso-

lation substantially - was the life-work of M. Milankovitch (1941), subsequently

improved by Berger (1980, 1988) and others. The tie of the glacial record to or-
bital variations did not become definitive until Imbrie and others discovered that

the isotopic record in the foraminifera of Pleistocene stratigraphic sequences re-

trieved from the ocean floor provided a proxy of ice volume, and found that

the fluctuations in ice volume not only showed the same hierarchical frequencies
of the orbital variations, but also historical coherence between these different

phenomena (Imbrie, 1982).

3 Pre-Quaternary Record of Orbital Variations

But many climatologists and geologists remained dubious about the existence

of an orbital record during non-glacial times. Duff, Hallam and Walton (1967)
suggested that whereas the relatively small changes in insolation values during

glacial times became greatly amplified by the positive feedback of a greatly in-

creased Earth albedo due to the spread of glaciers and pack ice, the absence

of such feed-back during non-glacial times made a record of orbital variations

unlikely. Stratigraphers working in the gap- riddled record of the epicontinen-

tal regions saw little hope of recovering a record of persistent rhythmicity.Yet,

some stratigraphers found rhythmic patterns in the stratigraphic record that

seemed best explained as products of orbital forcing. Thus G.K. Gilbert (1895)

interpreted the rhythmic spacing of limestones in the Late Cretaceous of Col-

orado as the expression of the precessional cycle, W. Bradley (1929) viewed the

rhythmical alternations of oil shales and dolomite beds in the lacustrine Green

River Formation (Eocene) of the Rocky Mountain region in the same manner,
and W. Schwarzacher (1947) viewed the alternations of massive and laminated
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carbonatesin theLateTriassicDachsteinplatformof theAlpsasprecessional,
andtheirgroupingintobundlesof5asanexpressionof the100kaeccentricity
cycle. Asgeologicalattentionhasshiftedfrompurelylocalor regionalcon-
cernsto globalpatterns,thenumberof thesestratigraphershasgrown(e.g.,
ROCC group, 1986; Fischer, 1986; Fischer et al., 1990; Fischer, 1991; Fischer

and Bottjer, 1991).

4 Oscillations Recorded in Older Stratigraphy

The pragmatic facts are that the stratigraphic record is replete with repetitive

features - some visible to the eye, (Fig. 5), others (such as the Pleistocene

isotope curve) only retrievable by instrumental studies. Some reflect only the

stochastically recurring alternations between the several modes of a depositional
system, such as the alternation of channel and overbank deposits in alluvial

systems, and were designated as "autocyclic." But others seem to have been

"allocyclic," driven by forces outside the regional setting, and candidates for the

rhythmic climatic- oceanographic changes to be expected from global forcing.

These oscillations are of many sorts, of which the following have been recognized
to date:

* 1. Cryogenic cycles. Changes in global ice volume, reflected in

- (a) variations in the isotopic composition of sea water. Best recorded

in foraminiferal tests of pelagic sediments retrieved from the deep-sea
floor (isotopic cycles) (Imbrie, 1982)

- (b) oscillations in sea level, on the scale of 10 -1- 10: m, best recorded

in subtidal-intertidal alternations and emergence cycles of carbonate

platforms (emergence cycles), (e.g. Schwarzacher 1947, Fischer 1964,

Goldhammer et al. 1987, Hinnov and Goldhammer 1991), (Fig. 1).

• 2. Carbonate production cycles. Oscillations in productivity of pelagic

carbonate producing organisms (mainly coccolithophorids) are best recorded
in pelagic chalk and marl sequences (Herbert and Fischer, 1987; Herbert

and d'Hondt, 1990; Fischer et al. 1991) (Figs. 2, 5).

• 3. Dilution cycles. Oscillations in the flux ofdetrital mud are best recorded

in hemipelagic sediments of continental margins (Roof et al., 1991).

• 4. Dissolution cycles. Oscillations in the depth and intensity of the lyso-

cline - the level at which oceanic carbonate accumulation gives way to

carbonate dissolution, best recorded in relatively deep (2-5 km) pelagic
sequences.

• 5. Desiccation cycles. Oscillations in the regional precipitation-evaporation
ratio are best recorded in
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- (a) marginal marine evaporite sequences, where annual varving per-

mits an approach to net evaporation as recorded in annual sulfate

precipitation (Anderson, 1982, 1984).

- (b) alternations of lake and playa conditions in lacustrine systems

(Fig. 1) (Olsen 1987, Fischer and Roberts 1991).

• 6. Redox cycles. Oscillations in the aeration of bottom waters best

recorded in pelagic systems by

- (a) retention of organic carbon (Figs. 2, 5), and

- (b) shifts in the spectrum of bottom-dwelling animals, best reflected
in their burrowing patterns (ichnofabric) (Fischer et al., 1991).

• 7. Magnetic cycles. Oscillations in magnetic parameters may be signif-
icant in sediments which acquired a remnant magnetism during or soon

after deposition, and in which this signature has not been irretrievably

lost by subsequent/magnetic overprints. The remnant magnetism thus

developed depends (a) on the presence and character of suitable magnetic

carrier phases (such as the mineral magnetite), and (b) on the strength

and direction of the then-prevailing magnetic field.

Inasmuch as the carrier phase is linked to lithology, which responds to climate

and oceanic change, oscillations in the carrier phase may be expected to reflect

orbital (as well as other) sorts of lithic forcing. Hence it is not surprising that

the detailed magnetic investigations of the Piobbico core (Napoleone et al.,
1991, 1992) find the 100 ka eccentricity cycle, dominant in Fourier spectra of

lithic variation, to be present in the magnetic intensity spectrum as well (Fig.

4). It is not so easy to explain why it should also appear in the inclination
and declination spectra. It is even more difficult to understand why a 39 ka

periodicity - that of the ob]iquity cycle - should dominate the magnetic intensity

spectra and should also appear in the inclination and declination spectra, when

it appears as only a very weak component of the various spectra related to

lithology. There would thus appear to be a possibility that the magnetic field is

affected by orbital variations - a suggestion that has been made previously, but

has never been taken very seriously by the paleomagnetic community. If it were

to be true, then paleomagnetic studies might provide a record of orbital cycles
that is independent of transmission through climatic and oceanic dynamics - a

possibility worth pursuing.

Paleontological criteria play a large role in the recognition of these cycles (1 a,

lb, 2, 4, 6) - which should not be surprising, considering the great sensitivity of
organic communities to climatic and oceanographic change.
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5 Theoretical Considerations

Complications arise from the following factors:

1. The cycles may be overprinted and swamped out by grosset lithic

changes in response to tectonic-geomorphic events. This is particularly

the case in marine settings near major sources of detrita] sediments, and

is minimized in carbonate platforms and pelagic settings.

2. Cycles may be only partially preserved or totally lost owing to interrup-

tions in deposition and continual reshuffling of sediments such as occurs

in the "tempestite regime." This implies that many stratigraphic facies
are never likely to lend themselves to the establishment of a "cyclostratig-

raphy."

3. Cycles of the higher frequencies may be largely or entirely destroyed

by the burrowing activities of organisms (bioturbation). This is likely to

be the case in slowly deposited facies, such as the "red clay" of the very
deep ocean floor, accumulated at mean rates of lmm/103 = lm/106years.

4. Cycle patterns are hierarchical and therefore complex (Figs. 2, 4,

5). The earliest workers sought to identify stratigraphic cycles with only

one forcing period, such as that of the precession. Subsequent studies

such as those by Schwarzacher (1947), Van Houten (1964), Herbert and

Fischer (1987) found hierarchical patterns. The hierarchy most commonly

encountered is the grouping of ca 5 bedding couplets into sets (bundles,

Figs. 2, 5), which may in turn be grouped into superbundles of 4 (Fig. 2).
On the other hand, the patterns can become complicated when members

of the hierarchy shift phase relative to the others, and vary in strength of
expression.

5. The different orbital forcing functions affect climate and oceanic be-

havior in quite different ways, and impinge upon a specific depositional

setting via different pathways. The northern and southern hemispheres,

for example, respond to the obliquity cycle in phase, but to the preces-

sional cycle 180 ° out of phase. When this complication is combined with

the observation that the climatic-oceanographic forcing of any given de-

positional setting contains both globally averaged effects such as sea level
and locally imposed effects such as variations in the amount and tim-

ing of insolation, the likelihood of a wide range of possible combinations
and variations emerges. When these effects take different pathways that

impose different lag times (such as global oceanic turnover), further com-
plications may result. On the one hand this may be daunting for a first

recognition of cycle patterns, but on the other such complexities, once

resolved, provide a wealth of additional information.
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6 Identification of Specific Cycles

Vital to development of a cyclostratigraphy is the identification of oscillations

observed in the stratigraphic record with specific cyclic forcing functions. This

revolves largely around timing the cycle period. The following approaches have
been used.

6.1 Varving.

The varve method, employed by Bradley (1929), Fischer and Roberts (1991),

Ripepe, Roberts and Fischer (1991), and Anderson (1982, 1984). Some sedi-
mentary sequences - in particular those of deep-water evaporites and those of

meromictic lakes - retain a fine lamination which can with reasonable probabil-

ity be assigned t.o the annum cycle, (varying). Conti1:}lJOUS varying pernfitted

Anderson to plot. variations in sulfate precipitation for a 200,000 year record,
which provided a remarkable record of the precession in late Permian time.

Episodic varying in lake sediments, extrapolated to the non-varved intervals,

permitted Bradley to recognize the precession in lacustrine Eocene sediments

of the Rocky Mountain region (see also Fischer and Roberts, 1991; Ripepe,

Roberts and Fischer, 1991). Varved sediments are, however, rare, and gener-

ally do not form time-series long enough to be useful in tinting cycles in the
Milankovitch frequency band.

6.2 Radiometry

Radiometric approaches are fairly accurate in the radiocarbon range (the last 30

ka, possibly extendable to 100 ka), and are applicable to many sediments, but

for the vast bulk of geological time (Harland et al., 1990) radiometry depends

on the dating of specific geological events, such as the emplacement of an ash

layer or an intrusion, which are then extrapolated to the stratigraphy at large.

Stratigraphical stage-boundaries dated in this manner generally have confidence

limits of one or two million years for the last 100 Ma or so, but beyond this the

uncertainties increase toward the 10 Ma level, and, in Cambrian time, beyond

that. The durations of Mesozoic stages, averaging 3-10 Ma long, have errors

in the range of 1-5 Ma. Rhythmic time series studied to date generally occupy
fractions of such a stage, and extrapolating the assumed stage duration down

to the level of the time-series in question involves further errors depending on

accuracy of stratigraphic correlations and uniformity of sedimentation rate. As

a result, such calculations are approximations with confidence limits in the range
of a factor of 1.5 to 2. This generally serves to ascertain whether a given rhythm

falls within the confines of the Milankovitch frequency band, but generally does
not, identify it. definitively with one of the specific orbital variations.
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6.3 Magnetic reversal stratigraphy
MagneticreversalssincetheLateJurassichavenowbeenidentifiedonthesea-
floor,andcanberecognizedin manystratigraphicsequences.Throughbios-
tratigraphythesereversalshavebeentiedtotheradiometricscale.Thewidthof
thecorrespondingmagneticanomalieson thedeep-seafloorprovidesa means
of refiningthe radiometrictime-scale,assumingrelativelyconstantsea-floor
spreadingrates.At timesof frequentreversals,thepolarityzonesareonlya
fewmillionyearslong,commonlyshorterthanstages,andmaythusafforda
betterbasisfor estimatingtheperiodsof cycles.Whereasmuchof our work
hasbeenin the"Cretaceouslongnormal"polaritychronwhichlackstherequi-
sitereversals,workin theTertiary(Schwarzacher,1987;Herbertandd'Hondt,
1990)haveusedreversalstratigraphyto goodeffectin datingcycles.

6.4 Ratios

Aspointedout above,stratigraphiccyclescommonlyoccurin hierarchies.A
groupingof ca5beddingcoupletsintobundles,inTriassicplatformemergence
cycleshasnowbeenwelldocumented(Schwarzacher,1947;Go]dhammeret al.,
1987;HinnovandGoldhammer,1991).It has been found in Triassic-Jurassic

lacustrine sequences (Van Houten, 1964; Olsen, 1986), and occurs in Eocene

(Fig. 5) and Cretaceous (Fig. 1, 2) pelagic sequences (Fischer et al., 1990).

Furthermore, the Triassic-Jurassic lacustrine beds and the Cretaceous pelagic
sequence of the Scisti a Fucoidi show a grouping of the 100 ka bundles into 400
ka superbundles.The geochronology based on radiometric data shows that these

examples all lie within the Milankovitch frequency band, and thus the case of

identi_,ing bedding couplets with the ca, 20 ka precession, the bundles with the

ca 100 ka eccentricity cycle, and the superbundles with the ca 400 ka eccentricity
cycle becomes compelling.The ratios between cycle levels in the hierarchy thus

emerge as an important clue to cycle identity. It is noteworthy, however, that
to date no such good ratios have been found in the Paleozoic. Such studies are

as yet in their infancy, but the 5;1 ratios, commonly visually striking in the

Cenozoic and Mesozoic, have not emerged (cf. Boardman and Heckel, 1989;
Goldhammer et al., 1991).

7 Present Status of Global Cyclostratigraphy

At this stage, the case for a pre-Quaternary record of orbital variations has

been made in principle. The main stratigraphic facies showing heirarchical
periodicities of the orbital variations are:

• (1) Deep-water evaporites (Permian, Anderson 1982, 1984). Their varv-

ing, offers the best age control. They suffer from (a) being too short to
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apprehendthelongercycles,(b) fromdifficultiesin tying themchrono-
logicallyto otherfacies,and(c) in beingscarce.Nevertheless,workon
thesesequencesshouldbepursued.Inparticular,it nowbecomesessential
to restudytheCastilesequencebymeansof instrumentalscans.Studies
shouldalsobecarriedon to othersequencesof this type,suchasthe
varvedanhydritesof tileZechstein Formation of Germany.

* (2) Lacustrine facies: Primarily the Triassic-Jurassic Newark Group se-

quences studied by Van Houten (1964) and Olsen (1986). Lakes as closed

systems provide continuity of deposits and a record responding mainly and

sensitively to local/regional climatic change (wet vs. dry). The disadvan-

tages of lacustrine studies lie mainly in poor ties t.o the marine record and

global geochronology. The most significant work being carried on at this

time is that of Paul Olsen (Lamont). Other large and persistent lake sys-
tems of this sort include an unstudied Devonian complex in Nova Scotia,

which would perhaps provide entry to the presently enigmatic Middle and
Lower Paleozoic.

• (3) Biogenic pelagic facies such as those explored in the Piobbico Core

(Fischer et al., 1991) in deep-sea cores (Herbert and co-workers). The

not-so-deep pelagic sediments appear to have recorded (a) changes in the
aeration state of the bottom waters, and (b) carbonate productivity in the

surface waters. These parameters presumably reflect changes in circula-

tion and in the general productivity patterns of the oceans, and a combi-

nation of local and global effects. Deep pelagic facies are complicated by

the superposition of dissolution events, and by the effects of bioturbation

on slowly accumulated muds.

• (4) Carbonate platform facies such as those studied by Schwarzacher

(1947), Fischer (1964), Goldhammer et al., (1987), and Hinnov and Gold-

hammer (1991). Such facies monitor small-scale sea-level fluctuations - a

globally integrated signal in contrast to lacustrine cycles. Whereas Mi-

lankovitch cyclicity has been well substantiated, uncertainties about the

origin of sea-level oscillations pose a problem (I lean toward small-scale

glacial effects). Also, like the evaporite and lacustrine records the plat-
form rocks generally lack the means of close correlation into the global

stratigraphy, based mainly on pelagic fossils.

8 My Own Researches

8.1 Piobbico Core

I have been working primarily with orbital cyclicity in the pelagic facies - and in

recent years mainly with the Piobbico core, cut by an Italo-American consortium

103



(Premoli Silva-Fischer-Napoleone) in the mid-Cretaceous Scisti a Fucoidi of the

central Apennines. We have used this core as a means of exploring various

techniques of extracting continuous time-series data of various parameters from

rocks. Figs. 2-4 are a summary of the work to date. We are continuing work
on this core.

8.2 Eocene of Angola

Some of my Italian colleagues, working in Angola, have discovered there what

appears to be a truly extraordinary Milankovitch sequence in Eocene chalks, in

which tile shale-chalk couplets appear even better defined than in the Albian of

Italy, as is their bundling into sets of ca 5 (Fig. 5). We hope to make a detailed

photographic record of these exposures in 1992, and to sample the sequence in
more detail.

The regional setting of this sequence - between the extremely nutrient- rich

upwelling belt of southwest Africa and the tropical waters of the Gulf of Guinea

- may well have provided an ideal site for recording lateral displacements of the

boundary, of the sort that might be driven by orbital cycles.

The Eocene, like the Mid-Cretaceous, was a time of Greenhouse Climate, and

this could well turn out to be the most dramatic expression of orbital/Milankovitch

cyclicity in greenhouse times. We do not presently have support for this study.

Eocene time contains numerous magnetic reversals, well tied into the planktonic

fossil record, and if Angolan sequence retains its original remnant magnetism

then it should be possible to define the cycle periods with a higher degree or
precision than has theretofore been achieved.

8.3 Project Albicore

It is one thing to establish the effects and a record of orbital forcing in principle,

in isolated sequences. Such work may indeed help to define the relative changes
in cycle periods through time. But they will not shed light on geological prob-

lems by providing refined chronologies, nor will they illuminate the problems of

ancient climates. For this it will be necessary to study cyclicity globally and

for restricted time-slices, which will provide a general view of changes in cycle
patterns as related to latitude, continent-ocean distribution etc.

Toward this end I hope to generate a global attack on the pelagic facies
of one time-slice - the Ticinella praeticinesis subzone of the Albian, about 100

million years ago, at about the peak of the Cretaceous greenhouse. We chose

this zone because (1), it shows such striking cyclicity in Italy (Fig. 2, 3, 4),

(2) it is readily recognized by foraminifera and nannofossils, and (3) it stems

from a time when high sea- levels left a widely distributed record of pelagic

sediment. We expect to find such sediments in about 15-20 countries. My p]an

is to carry on studies modelled somewhat (with improvements) on those we have
developed in Italy (Piobbico core), which will produce comparable data. The
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work in individual countries would be financed and carried out by groups of

concerned scientists, advised and aided by an international steering committee.

Our first step in this direction will be an international workshop, organized

by Premoli Silva, Fischer and Napoleone, to be held on October 4-9, 1992, in

Perugia, Italy. The reason for choosing that locale is that it lies within striking

distance of the outcrops in which our model - the cyclicity in the Scista a Fucoidi

- can be displayed.

This workshop will be largely combined with another, the APTICORE con-
ference of Larson and Erba. This will attempt, to organize a parallel project to

focus on the slightly earlier (early Aptian) events - the eruption of enormous

quantities of basalt in the mid-Pacific region, and the widespread development
of oil shales the Selli Bed - which is also very well displayed there. A vital part

of the participants - that of the world's Mid- Cretaceous stratigraphers - will be

equally involved in both workshops.
The aim of the ALBICORE workshop will include (a) alerting the Mid-

Cretaceous stratigraphers to the opportunities provided by these approaches,

which provide a focus very different from the conventional one, (b) educat-

ing them in the general background, in the need for extended interdisciplinary

approaches, (c) providing a general forum of exchange on these matters, (d)

organizing some international "action groups" who would set. out to undertake
such studies at specific locales, and (e) organizing a supporting organization

that would provide advice, and support such as providing laboratory facilities

for specific types of analyses.

We expect 50-75 people for the combined workshops. Larson has asked

NSF Ocean Sciences for support, through JOIDES, and this may help to cover

travel expenses for the 15 or so US participants, but is limited to supporting
US workers. Our dependence on other nations, many of whose scientists do not

have travel money, makes it imperative to find funds no thus restricted. I hope

that the NSF Global Change program will allow for this, but we are likely to

fall short of support for non-US participants.

9 References

ANDERSON, R.Y., 1982, A Long Geoclimatic Record From the Permian, Jour-

nal of Geophysical Research, v. 87, p. 7285- 7294.

BERGER, A., 1980, Milankovitch Astronomical Theory of Paleoclimates: A
Modern Review, Vistas in Astronomy, v. 24, p. 103-122.

BERGER, A., 1988, Milankovitch Theory and Climate, Reviews of Geo-

physics, v. 26, p. 624-657.

BERGER, A., LOUTRE, M.F., AND DEHANT, V., 1989, Influence of the

Changing Lunar Orbit on the Astronomical Frequencies of Pre-Quaternary In-

solation Patterns, Paleoceanography, v. 4, p. 555-564.

105



BOARDMAN,D.R.II, ANDHECKEL,P.H.,1989,Glacial-EustaticSea-
LevelCurve for Early Late Pennsylvanian Sequence in North-Central Texas

and Biostratigraphic Correlation With Curve for Midcontinent North America,
Geology, v. 17, p. 802-805.

BRADLEY, W.B., 1929, The Varves and Climate of the Green River Epoch,
U.S. Geological Survey Professional Paper, 158, p. 87-110.

DUFF, P.M., HALLAM, A. AND WALTON, E.K., 1967, Cyclic Sedimenta-
tion, Elsevier, 280 pp.

FISCHER, A.G., 1964, The Lofer Cyclothems of the Alpine Triassic, Kansas
Geological Survey Bull., v. 169, p. 107- 149.

FISCHER, A.G., 1984, The Two Phanerozoic Supercycles: in Berggren, W.,
and Van Couvering, J., eds., Princeton Univ. Press pp. 29-150.

FISCHER, A.G., 1986, Climatic Rhythms Recorded in Strata, Ann. Rev.
Earth & Planet. Sci., 14,351-376.

FISCHER, A.G., deBOER, P., & PREMOLI SILVA, I., 1990, Cyclostratig-
raphy, In Ginsburg, R.N., & Beaudoin, B., eds., Cretaceous Resources, Events

and Rhythms, Dordrecht-Boston-London, Kluwer Publ., p. 139-172.

FISCHER, A.G., HERBERT, T.D., PREMOLI SILVA, I., NAPOLEONE,

G., & RIPEPE, M., 1991, Albian Pelagic Rhytluns (Piobbico core), Jour. Sed-
imentary Petrology, v. 61, No. 7, (in press).

FISCHER, A.G., & ROBERTS, L., 1991, Cyclicity in the Green River For-

mation (Lacustrine Eocene), Wyonaing, 1991, Jour. Sediment, Petrol., v. 61,
No. 7, (in press).

GILBERT, G.K., 1895, Sedimentary Measurement of Geological Time, Jour-
nal of Geology, v. 3, p. 121-125.

GOLDHAMMER, R.K., DUNN, P.A., AND HARDIE, L.A., 1987, High-
Frequency Glacioeustatic Oscillations With Milankovitch Characteristics Recorded

in Middle Triassic Platform Carbonates in Northern Italy, Amer. Jour. Sci.,
287, 853- 892.

GOLDHAMMER, R.K., OSWALD, E.J., AND DUNN, P.A., 1991, in Franseen,

E.K., Watney, W.L., Kendall, C. St. C., and Ross, W.C., (eds.), Sedimentary
Modeling: Computer Simulations and Methods for Improved Parameter Defini-

tion, Kansas Geological Survey, in press.

HARLAND, W.B., ARMSTRONG, R.L., COX, A.V., CRAIG, L.E., SMITH,

A.G., AND SMITH, D.G., A Geologic Time Scale 1989, 1990, Cambridge Uni-
versity Press, 280 pp.

HAYS, J.D., IMBRIE, J., AND SHACKLETON, N.J., 1967, Variations in

the Earth's Orbit: Pacemaker of the Ice Ages, Science, v. 194, p. 1121-1132.
HERBERT, T.D., AND F1SCHER, A.G., 1986, Milankovitch Climatic Ori-

gin of Mid-Cretaceous Black Shale Rhythms in Central Italy, Nature, 321,739-
743.

IMBRIE, J., 1985, A Theoretical Framework for the Pleistocene Ice Ages,
Jour. Geol. Soc., London, 142, 417- 432.

106



IMBRIE,J., ANDIMBRIE,K., IceAges:SolvingtheMystery,Harvard
Univ.Press,224pp.

MILANKOVITCH,M.,1941,KanonderErdbestrahlungundSeineAnwen-
dungaufdasEiszeitenprob]em,SerbianAcademyofScience,v. 133,633pp.

NAPOLEONE,G.,& RIPEPE,M., 1990,CyclicGeomagneticChangesin
Mid-CretaceousRhythmites,Italy,TerraNova,1,437-442.

NAPOLEONE,G.,RIPEPE,M.,ALBIANELLI,A.,LANDI,S.,ANDPOM-
PEO,R., 1992,VariazioniCicliche del Campo Magnetico Terrestre ne'll Albiano

Superiore della Seria Umbra, Bol. Societa Geol. Ital., in press.

OLSEN, P., 1986, A 40-million Year Lake Record of Early Mesozoic Orbital

Forcing, Science, v. 234, p. 842-848.
RIPEPE, M., ROBERTS, L., AND FISCHER, A.G., 1991, ENSO and Sunspot

Cycles in Eocene Oil Shales: An hnage Analysis Study, in Franseen, E.K., Wat-

hey, W.L., Kendall, C. St. C., and Ross, W.C., (eds.), Sedimentary Modeling:

Computer Simulations and Methods for Improved Parameter Definition, Kansas

Geological Survey, in press.

ROCC GROUP, 1986, Rhythmi Bedding in Upper Cretaceous Pelagic Car-

bonate Sequences: Varying Sedimentary Response to Orbital Forcing, Geology,

14, 153-159.

SAVRDA, C.E., AND BOTTJER, D.J., 1989, Trace-fossil Model for Recon-

structing Oxygenation Histories of Ancient Marine Bottom Waters: Application

to Upper Cretaceous Niobrara Formation, Colorado, Paleogeography, Paleocli-

matology, and Paleoecology, v. 74, p. 49-74.

SCHWARZACHER, W., 1947, Ueber die Sedimentaere Rhythmik des Dachsteinkalkes

von Lofer, Geologische Bundesanstalt, Wien, Verhandlungen, 1947, No. 10-12,

p. 175-188. SCHWARZACHER, W., 1987, Astronomically Controlled Cycles

in the Lower Tertiary of Gubbio, Earth & Planet. Sci., Letters, 84, 22-26.

SCHWARZACHER, W., 1990, Milankovitch Cycles and the Measurement

of Time, Terra Nova, 1,405-408.

VAN HOUTEN, F.B., 1964, Cyclic Lacustrine Sedimentation, Upper Tri-

assic Lockatong Formation, Central New Jersey and adjacent Pennsylvania,
Kansas Geological Survey, Bulletin, v. 169, p. 497-531.

107



A B C D E
NEWARK S. A FUCOID| NIOBRARA DACHSTEI'_ LATEMAR

Lake Le,,e!

_" Ab
c

7

E3

)

Marine Redox & Producti_is._ Sea Le,,e| Sea Level

- "--" ,ec Cc _"_..,,.<<.._. ,-

,/
_ _ _

Rvc su'atigraphic _qucnc_ _h_wini; hicrarchical rhy_.h_icity id_tified with orbital cycI_L

Up_r tier Comparison of p_ional cycles. No4e variations in scale. Lo_r der =cce_u_c_ty cycles. A

Lac_u'_ne facies, THassic-,lur-a._;ic Newark Supcxgroup, eastern North America. A" Prcccs_ioru_[ cycle

lake- shore mucbton, es _c.., follow,-,'l by ]acusu'in¢ fish-hear'in• shale (commonly black), succ'oec_.d by

play• mudstones • lgkc-|evcl cycle. Ah _c:cc,nu'_city cycles. EL,2 cycle: 13ucl.uau_or_ in carbonate and

analcime contcn_ a|tributed Io degree of b_n flushing by periodic •tta_nmeot of overflow 1:3 cycle is •

moduhdon in ox.idado'n level, resulting in ahcrnadon of drab and tea colo_. B Pelagic, Albign Scisd •

Fucoidi, l_ly. B• Pr¢cc_ional cycle black, mort: or Ics_ laminated shale (anaerobic) succcc4:_d by

Chondrh_ marls (dy_embie) followed by Plano|itcs-bca,-'ing limestone (aerobic). Cyc|c atu'ibu_ed _o

fluctuations in planktonic caJ'bonatc producdvily linked to dcgrcc of bottom a=rafion. Bb An EI,2 bundlc

of precessional cycles expressed in calcium carbonate values (mirror plot) &rid "1_occurrence of black

shales. Piobbico core, Bc Instrumcnud profiles of $ m (1600 Ira) of Piobbieo core. showing dartmess curve

(tefr) and calcium carbonate curvc (right). Black shalc_ in center. High-frequency signal is tha_ of

prec_,sion-I coupleLs; hScse are grouped into 1:1.2.bundles, •nd Lhesc into E3 ml:x:doundles. (Abet Herbert

and Rsch_ 1986). Bd muldtapcr spc£tra of darkness cueve and calcium ca_© curve, showins thc El,2

peak ('Park and Herbcrl 1997). C Hem•pelagic Coni-cian.-Campanian Niobrara Formation. Colorado, USA.

Ca Precessional signal: shale, dark. nonbioeurbatod, anaerobic?, followed by Chora_tcs chalk (dysacrobic),

succeeded by Planolizes- bearing chalk (aerobic). Cb Precessional couplets defined by ok:tailed calcium

carbonalc profile.s and organic carbon content. Bcrlhoud No. I $|ale. (Pratt et al. 1990). Cc Endre Niobrara

Formation, B_houd No. I State. Left calcium carbonate curve, general; right gamma ray log. Precessional

cycles not resolved. 1:1.2 cycles, at lower limi| of resolution, arc grouped into E3 _Jrxa-bundles in sets of

4, and thee inlo a y_ longer cycle which may represent E4 or • slill longer (1600 ka) cycle. (After Pratt

et •l. 1990). Cd Fort Hays Mcmbcr. Adobe Oil & Gas Co. Johnson Taylor ! 1-2:2., minor plot of resistivity

latcrolog. Precessional cycles nol resolved. 1:1.2 cycl,_; groul'P,.d into 1:3 "superbundles'. (After Lafcrricrc

et al. 1987). D Platform facics. Late Triassic Dachstcin Limestone, No¢lhcrn Alps. Precessional signal:

massivc net•tic limcs_onc con:•in•n• large clams clc. ahcma_es with pcritidal algal lamini_. Evidence

hSal • oust•tic oscillation commonly led to full cmergcnee of platform is fumishc<l by octagonal presence

of rtlic sqils (clayey red to x:r.ccmudstoncs) and common rnudstone-fille.d

108



Ma

a

d

/
C

IV

III

II

b

a

d

b

d

C

C

_ _E1,2E
B 0 2 4 6 6 "tO

Fig. 2--Quantitative expression of hierarchical Milankovitch cyclicity patterns in

the pelagic Mid-Cretaceous (Scisti a Fucoidi) of Italy (Fig. 1). Left curve: varia-

tions of gray-scale darkness, by microdensitometry of diapositives; right curve:

calcium-carbonate values. High-frequency dark-light (low-carbonate/high-

carbonate) bedding couplets (a,b,c,d,e) represent the precessional cycle (produc-

tivity and redox cycles combined). A baseline variation in carbonate content (and

thickness of carbonate beds) groups these couplets into sets of ca. 5, representing

the ca. 100-ka eccentricity cycles (1,2,3,4). The enveloping trace shows the

grouping of bundles into sets of 4, representing the ca. 400-ka eccentricity cycle

(A,B,C .... ). From Fischer et al., 1991.
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Fig. 5--Pelagic chalk-marl sequence in Eocene of Angola. This is the most

dramatic visual stratigraphic record of Milankovitch cyclicity known to me, but

has yet to be studied. By analogy with the Scisti a Fucoidi cycles (Figs. 1, 2 and

3), I would interpret the high-frequency chalk-marl bedding couplets as alterna-

tions of (a) calcareous plankton blooms combined with bottom aeration, and (b)

reduction of carbonate productivity combined with bottom stagnation. This

appears to be a record of the precession. They are bundled in sets of ca. 5 into

what would have to be the ca. 100-ka eccentricity cycle. The number of bundles

in the 20-km strip of coastal cliffs is estimated at ca. 100, which implies a 10-

million-year record of Milankovitch cyclicity. Study is being planned.
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Evidence of Orbital Forcing in 510 to 530 Million Year Old

Shallow Marine Cycles, Utah and Western Canada

Gerard C. Bond

Lamont-Doherty Geological Observatory

Palisades, NY 10964

John Beavan

Lamont-Doherty Geological Observatory

Palisades, NY 10964

Michelle A. Kominz

Department of Geology

University of Texas
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William Devlin

Exxon Production Research Co.

Houston, TX 77252

We have completed spectral analyses of two sequences of shallow marine sedimentary cycles that

were deposited between 510 and 530 million years ago. One sequence is from Middle Cambrian rocks

in southern Utah and the other is from Upper Cambrian rocks in the southern Canadian Rockies. In

spite of the antiquity of these strata, and even though there are differences in the age, location and

cycle facies between the two sequences, both records have distinct spectral peaks with surprisingly

similar periodicities. A null model constructed to test for significance of the spectral peaks and

circularity in the methodology indicates that all but one of the spectral peaks are significant at the

90% confidence level. When the ralios between the statistically significant peaks are measured, we

find a consistent, relation to orbital forcing; specifically, the spectral peak ratios in both the Utah and

Canadian examples imply that a significant amount of the variance in the cyclic records is driven

by the short eccentricity (- 109 ky) and by the precessional (" 21 ky) components of the Earth's

orbital variations. Neither section contains a significant component of variance at the period of the

obliquity cycle, however.

In the Utah example, the spectral separation between the short eccentricity and precessional peaks
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is longer (by about 30%) than expected for the frequencies of the modern orbital parameters. This

result is intriguing because a shift in the separation of the peaks by this magnitude is consistent

with the recent, estimate by Berger of tile changes in the frequencies of orbital parameters for the

early Paleozoic.

We were able to extract these results from poorly dated rocks of great age only after applying

a new method we have developed, which we call the gamma method, for scaling relative time in

sedimentary strata. The gamma method works only for well developed cyclic sequences. It makes use

of the fact that if the cycles are periodic, there will be a predictable relation between the duration

of the cycles and the durations of the facies that compose the cycles. This relation is tested by

applying least squares procedures to data from sections measured through the cyclic strata. The

mcxst important advantage of our method is that it does not require a high-resolution numerical time

scale; it can be applied to strata of any age, even Precambrian, provided that they have the right

type of cyclicity.

The results of our initial experiments suggest to us that our new method has much promise and

that the record of orbital forcing in sedimentary rocks, particularly in cyclic strata, may be much

more robust over geologic time than is generally thought. To test this idea, we are applying the same

methodology to other examples from older and younger parts of the geologic record. One recent

result of this work is very encouraging evidence of orbital forcing of shallow marine siliciclastic cycles

of Cretaceous age in part of the Western Interior Basin in Wyoming. If we continue to be successful

in this ongoing project, we will be in a unique position to address some long-standing questions

about the stability of the Earth's orbital system and about long-term changes in the Earth's orbital

parameters.
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The Cyclic Carbonates of the Latemar Massif: Evidence for

the Orbital Forcing of a Carbonate Platform during the

Middle Triassic

Linda Hinnov

Department of Earth and Planetary Sciences

The Johns Hopkins University

Baltimore, Maryland 21218

The Latemar Massif is an exhumed carbonate platform in the Dolomites of Northern Italy that

was deposited during the Ladinian stage of the Middle Triassic. The platform interior is comprised

of hundreds of vertically stacked, meter scale, subtidal limestone/vadose dolostone cap carbonate

cycles (" Latemar couplets") arranged into upward thinning bundles of 5. The individual couplets are

interpreted as the products of sea level oscillations occurring with a " 20,000 year periodicity; the 5:1

bundling is indicative of a lower order - 100,000 year modulating component. This combination of

cycling is interpreted as a platform response to precession forcing with the 5:1 bundling an expression

of modulation by the eccentricity.

Spectral analysis confirms the significance of the 5:1 bundling, and identifies other significant

bundling components related to other components of the eccentricity• The results show that the

Latemar bundling spectrum is complex, with a splitting of components around the 1:% bundling

frequency, suggestive of the multiple component eccentricity in the 100,000 year range• On the other

hand, there is no direct evidence for the major 400,000 year eccentricity component, although there

is a dominant " 700,000 )'ear cycling in the buildup (a 35:1 bundling period). Other higher frequency

bundling components may be related to obliquity forcing. Simple models are presented to argue for

and against an astronomical origin of these cyclic platform carbonates.
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